Preview

ПОВОЛЖСКИЙ ЭКОЛОГИЧЕСКИЙ ЖУРНАЛ

Расширенный поиск

ТРОФОМЕТАБОЛИЧЕСКИЙ ПОТЕНЦИАЛ EISENIA FETIDA SAVIGNY, 1826 (OLIGOCHATA, LUMBRICIDAE), ОБУСЛОВЛЕННЫЙ ПРИСУТСТВИЕМ В ПОЧВЕ НАНОЧАСТИЦ МЕДИ И ЕЁ ОКСИДА

https://doi.org/10.18500/1684-7318-2017-2-147-156

Аннотация

В зависимости от концентрации наночастиц (НЧ) Cu и CuO (50, 100 и 500 мг/кг сухого вещества), вводимых в искусственную почву, эффект воздействия НЧ Cu на Eisenia fetida Savigny, 1826 намного сильнее, чем аналогичные дозы CuO. В частности, это выражалось в высокой смертности (80%) и снижении массы червя на 50% (р ≤ 0.05) при дозе НЧ Сu 500 мг/кг, тогда как аналогичная доза НЧ СuO не превышала предела валидности теста (20%). Установлена высокая степень аккумуляции меди в теле E. fetida при воздействии НЧ Cu, тогда как при экспозиции в среде в присутствии НЧ СuO накопление металла происходит до уровня 29 мг/кг с последующим его снижением. Активность антиоксидантных ферментов выражалась в снижении показателей малонового альдегида, супероксиддисмутазы и увеличения каталазы. В присутствии НЧ СuО активность ферментов имела противоположную реакцию.

Об авторах

Святослав Валерьевич Лебедев
Оренбургский государственный университет
Россия


Елена Анатольевна Сизова
Оренбургский государственный университет; Всероссийский НИИ мясного скотоводства
Россия


Ирина Александровна Гавриш
Оренбургский государственный университет
Россия


Список литературы

1. Покаржевский А. Д. Геохимическая экология наземных животных. М. : Наука, 1985. 302 с.

2. Тейлор Д., Грин Н., Стаут У. Биология : в 3 т. / под ред. Р. Сопера. M. : Мир, 2004. Т. 2. С. 139.

3. Adams L. K., Lyon D. Y., Alvarez P. J. J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions // Water Research. 2006. Vol. 40, iss. 19. Р. 3527 - 3532.

4. Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants // Environmental Science Technology. 2000. Vol. 34, № 20. Р. 4259 - 4265.

5. Brown P. J., Long S. M., Spurgeon D. J., Svendsen C., Hankard P. K. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon // Chemosphere. 2004. Vol. 57, № 11. Р. 1675 - 1681.

6. Dalby P. R., Baker G. H., Smith S. E. «Filter paper method» to remove soil from earthworm intestines and to standardize the water content of earthworms // Soil Biology and Biochemistry. 1996. Vol. 28, iss. 4 - 5. P. 685 - 687.

7. Eisenhauer N. The action of an animal ecosystem engineer : identification of the main mechanisms of earthworm impacts on soil microarthropods // Pedobiologia. 2010. Vol. 53, iss. 6. Р. 343 - 352.

8. García-Gómez C., Esteban E., Beatriz Saґnchez-Pardo B., Dolores M. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms : relevance of soil (total and available) and body concentrations // Ecotoxicology. 2014. Vol. 23, iss. 7. Р. 1195 - 1209.

9. Handy R. D., Henry T. B., Scown T. M., Johnston B. D., Tyler C. R. Manufactured nanoparticles : their uptake and effects on fish-a mechanistic analysis // Ecotoxicology. 2008. Vol. 17, iss. 5. Р. 396 - 409.

10. Jouquet P., Blanchart E., Capowiez Y. Utilization of earthworms and termites for the restoration of ecosystem functioning // Applied Soil Ecology. 2014. Vol. 73. Р. 34 - 40.

11. Kou Y. G., Fu X. Y., Hou P. Q. The study of lead accumulation of earthworm in lead pollution soil // Environmental Science and Management. 2008. Vol. 33, № 1. Р. 62 - 64 (In Chinese).

12. Lavelle P., Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.-P. Soil invertebrates and ecosystem services // European J. of Soil Biology. 2006. Vol. 42, iss. 1. Р. 3 - 15.

13. Li Z. Q., Wang B. B., Nie J. H. Effects of copper on earthworm in body weight and its copper accumulating characteristics // Acta Ecologica Sinica. 2009. Vol. 29. Р. 1408 - 1414 (In Chinese).

14. Lin D. H., Xing B. S. Phytotoxicity of nanoparticles : inhibition of seed germination and root growth // Environmental Pollution. 2007. Vol. 150, iss. 2. Р. 243 - 250.

15. Lin D., Xie X., Zhou Q., Liu Y. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests // Environmental Toxicology. 2012. Vol. 27, iss. 7. Р. 385 - 392.

16. Liu Y., Zhou Q., Xie X., Lin D., Dong L. Oxidative stress and DNA damage in the earthworm Eisenia fetida induced by toluene, ethylbenzene and xylene // Ecotoxicology. 2010. Vol. 19, № 8. Р. 1551 - 1559.

17. Livingstone D. R. Biotechnology and pollution monitoring : use of molecular biomarkers in the aquatic environment // J. of Chemical Technology and Biotechnology. 1993. Vol. 57, iss. 3. Р. 195 - 211.

18. Lover S. B., Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles // Environmental Toxicology and Chemistry. 2006. Vol. 25, iss. 4. Р. 1132 - 1137.

19. Luoma S. N., Rainbow P. S. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept // Environmental Science and Technology. 2005. Vol. 39, iss. 7. Р. 1921 - 1931.

20. Morgan J. E., Richards S. P. G., Morgan A. J. Stable strontium accumulation by earthworms : A paradigm for radiostrontium interactions with its cation analogue, calcium // Environmental Toxicology and Chemistry. 2001. Vol. 20, iss. 6. Р. 1236 - 1243.

21. Pan B., Xing B. S. Applications and implications of manufactured nanoparticles in soils : a review // European J. of Soil Science. 2012. Vol. 63, iss. 4. Р. 437 - 456.

22. Peijnenburg W. J. G. M., Baerselman R., de Groot A. C., Jager T., Posthuma L., Van Veen R. P. M. Relating environmental availability to bioavailability : soil-type-dependent metal accumulation in the oligochaete Eisenia Andrei // Ecotoxicology and Environmental Safety. 1999. Vol. 44, iss. 3. Р. 294 - 310.

23. Sample B. E., Beauchamp J. J., Efroymson R. A., Suter G. W., Ashwood T. L. Development and validation of bioaccumulation models for earthworms // Environmental Restoration Program / ed. M. Lockweed. Tennessee : Oak Ridge National Laboratory, 1998. 88 p.

24. Scott-Fordsmand J. J., Krogh P. H., Schaefer M., Johansen A. The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms // Ecotoxicology and Environmental Safety. 2008. Vol. 71, iss. 3. Р. 616 - 619.

25. Semenzin E., Critto A., Carlon C., Rutgers M., Marcomini A. Development of a site-specific ecological risk assessment for contaminated sites : part II. A multi-criteria based system for the selection of bioavailability assessment tools // Science of the Total Environment. 2007. Vol. 379, iss. 1. Р. 34 - 45.

26. Sun W., Tai T. Y., Lin Y. S. Effect of monosultap on protein content. SOD and AChE activity of Eisenia foetida under two different temperatures // J. Agro-Environment Science. 2007. Iss. 5. Р. 1816 - 1821 (In Chinese).

27. Suthar S., Singh S., Dhawan S. Earthworm as bioindicators of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils : is metal bioaccumulation affected by their ecological categories // Ecological Engineering. 2008. Vol. 32, iss. 2. Р. 99 - 107.

28. Van Gestel C. A. M., Koolhaas J. E., Hamers T., van Hopper M., van Roovert M., Korsman C., Reinecke S. A. Effects of metal pollution on earthworm communities in a contaminated floodplain area : linking biomarker, community and functional responses // Environmental Pollution. 2009. Vol. 157, iss. 3. P. 895 - 903.

29. Van Straalen N. M., Butovsky R. O., Pokarzhevskii A. D., Zaitsev A. S., Verhoef S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia) // Pedobiologia. 2001. Vol. 45, iss. 5. Р. 451 - 466.

30. Vijver M. G., Van Gestel C. A. M., Lanno R. P., Van Straalen N. M., Peijnenburg W. J. G. M. Internal metal sequestration and its ecotoxicological relevance : a review // Environmental Science and Technology. 2004. Vol. 38, iss. 18. Р. 4705 - 4712.

31. Vijver M. G., Vink J. P. M., Miermans C. J. H., Van Gestel C. A. M. Oral sealing using glue : a new method to distinguish between intestinal and dermal uptake of metals in earthworms // Soil Biology and Biochemistry. 2003. Vol. 35, iss. 1. Р. 125 - 132.

32. Wang M. E., Zhou Q. X. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels // Environmental Pollution. 2006. Vol. 144, iss. 2. Р. 572 - 580.

33. Zhang J., Yu J., Ouyang Y., Xu H. Responses of earthworm to aluminum toxicity in latosol // Environmental Science and Pollution Research. 2013. Vol. 20, iss. 3. Р. 1135 - 1141.

34. Zhang B., Pan X., Cobb G. P., Anderson T. A. Uptake, bioaccumulation, and biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida) // Chemosphere. 2009. Vol. 76, iss. 1. Р. 76 - 82.


Рецензия

Для цитирования:


Лебедев С.В., Сизова Е.А., Гавриш И.А. ТРОФОМЕТАБОЛИЧЕСКИЙ ПОТЕНЦИАЛ EISENIA FETIDA SAVIGNY, 1826 (OLIGOCHATA, LUMBRICIDAE), ОБУСЛОВЛЕННЫЙ ПРИСУТСТВИЕМ В ПОЧВЕ НАНОЧАСТИЦ МЕДИ И ЕЁ ОКСИДА. ПОВОЛЖСКИЙ ЭКОЛОГИЧЕСКИЙ ЖУРНАЛ. 2017;(2):147-156. https://doi.org/10.18500/1684-7318-2017-2-147-156

For citation:


Lebedev S.V., Sizova E.A., Gavrish I.A. TROPHOMETABOLIC POTENTIAL OF ESENIA FETIDA SAVIGNY, 1826 (OLIGOCHATA, LUMBRICIDAE) CAUSED BY COPPER NANOPARTICLES AND COPPER OXIDE IN THE SOIL. Povolzhskiy Journal of Ecology. 2017;(2):147-156. (In Russ.) https://doi.org/10.18500/1684-7318-2017-2-147-156

Просмотров: 231


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)