Preview

Povolzhskiy Journal of Ecology

Advanced search

Comparative Study of the Rhizospheric Microflora of Sunflower Cultivars Helianthus annuus (Asteráceae, Magnoliópsida) Grown on Soils with Anthropogenic Polyelemental Anomalies

https://doi.org/10.35885/1684-7318-2020-4-442-458

Abstract

In a laboratory pot experiment, two mutant cultivars of sunflower (Helianthus annuus cv. r2p2 and Helianthus annuus cv. r5n1) were grown on soils with anthropogenic polyelemental anomalies and on a background control soil, and a comparative analysis of their rhizospheric microflora was carried out. The numbers of soil bacteria, actinomycetes and micromycetes, as well as the numbers of rhizospheric microorganisms resistant to Zn2+, Pb2+, and Cu2+ ions were estimated in the rhizosphere of sunflower cultivars. Quantitative changes in the sunflower rhizospheric microboceno-ses, formed under the influence of both the plant genotype and technogenic soil pollution, were revealed. A pronounced stimulation of the rhizospheric microorganisms of all groups studied was found when plants were cultivated on the technogenically contaminated soil from PJSC Kosogorsk Metallurgical Plant. In this case, cultivar differences were observed, namely: the maximal number of bacteria and actinomycetes was revealed in the rhizosphere of H. annuus cv. r2p2, whilst the maximal number of micromycetes was revealed in the rhizosphere of H. annuus cv. r5n1. An increased number of microorganisms resistant to lead ions was revealed in the rhizosphere of H. annuus cv. r2p2. The observed changes in the structure of rhizospheric microbial communities of the sunflower cultivars manifested in the stimulation of the growth and activity of soil microflora can be in demand for phytoremediation of technogenically contaminated soil.

About the Authors

A. Yu. Muratova
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences
Russian Federation
13 Prospect Entuziastov, Saratov 410049


N. A. Zelenova
Saratov State University
Russian Federation
83 Astrakhanskaya St., Saratov 410012


I. Yu. Sungurtseva
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences
Russian Federation
13 Prospect Entuziastov, Saratov 410049


S. V. Gorelova
Tula State University
Russian Federation
92 Prospect Lenina, Tula 300012


A. P. Kolbas
Brest State A. S. Pushkin University
Belarus
21 Kosmonavtov Boulevard, Brest 224016


Ye. V. Pleshakova
Saratov State University
Russian Federation
83 Astrakhanskaya St., Saratov 410012


References

1. Bitjuckij N. P. Mikroelementy i rasteniia [Trace Elements and Plants]. Saint Petersburg, Izdatel'stvo Sankt-Peterburgskogo universiteta, 1999. 230 p. (in Russian).

2. Vremennye metodicheskie rekomendacii po kontrolju zagrjaznenija pochv. Pod red. S. G. Malahova [S. G. Malakhov, ed. Temporary Guidelines for the Control of Soil Pollution]. Moscow, Gidrometeoizdat Publ., 1984, part 2. 61 p. (in Russian).

3. GN 2.1.7.2041-06. Predel'no dopustimye koncentracii (PDK) himicheskih veshhestv v pochve: Gigienicheskie normativy [GN 2.1.7.2041-06. Maximum Permissible Concentrations (MPC) of Chemicals in the Soil: Hygienic Standards]. Moscow, Federal'nyj centr gigieny i jepidemiologii Rospotrebnadzora Publ., 2006. 15 p. (in Russian).

4. GN 2.1.7.2511-09. Orientirovochno dopustimye koncentracii (ODK) himicheskih ve-shhestv v pochve : Gigienicheskie normativy [GN 2.1.7.2511-09. Approximate permissible concentrations (APC) of chemicals in the soil: Hygienic standards]. Moscow, Moscow, Federal'nyj centr gigieny i jepidemiologii Rospotrebnadzora Publ., 2009. 10 p. (in Russian).

5. GOST 26483-85. Soils. Preparation of Salt Extract and Determination of its рН by CINAO Method. Moscow, Izdatel'stvo standartov, 1985. 5 p. (in Russian).

6. GOST 26488-85. Soils. Determination of Nitrates by CINAO Method. Moscow, Izdatel'stvo standartov, 1985. 7 p. (in Russian).

7. GOST 26489-85. Soils. Determination of Exchangeable Ammonium by CINAO Method. Moscow, Izdatel'stvo standartov, 1985. 8 p. (in Russian).

8. Drugov Ju. S., Rodin A. A. Ekologicheskie analizy pri razlivah nefti i nefteproduktov, prakticheskoe rukovodstvo [Environmental Analyzes for Oil and Oil Products Spills, a Practical Guide]. Moscow, BINOM Publ., 2017. 270 p. (in Russian).

9. Kolesnikov S. I. Ponomareva S. V., Kazeev K. Sh., Valkov V. F. Ranking of Chemical Elements According to the Degree of Their Ecological danger to the Soil. Reports of the Russian Agricultural Academy of Sciences, 2010, no. 1, pp. 27–29 (in Russian).

10. Kolesnikov S. I., Popovich A. A., Kazeev K. Sh., Val’kov V. F. The Influence of Fluorine, Boron, Selenium, and Arsenic Pollution on the Biological Properties of Ordinary Chernozems. Eurasian Soil Science, 2008, vol. 41, no. 4, pp. 400–404.

11. Marfenina O. E. Antropogennaja jekologija pochvennyh gribov [Anthropogenic Ecology of Soil Fungi]. Moscow, Medicina dlja vseh Publ., 2005. 196 p. (in Russian).

12. OST 4641-76. Methods for Agrochemical Soil Analysis. Determination of Mobile Forms of Phosphorus and Potassium in Soils by Chirikov Method Modified by CINAO. Moscow, 1976. 14 p. (in Russian).

13. PND F 16.1:2:2.2:2.3:3.64-10. Metodika izmerenij massovoj doli nefteproduktov v probah pochv, gruntov, donnyh otlozhenij, ilov, osadkov stochnyh vod, othodov proizvodstva i potreblenija gravimetricheskim metodom [PND F 16.1:2:2.2:2.3:3.64-10. Methods for Measuring the Mass Fraction of Petroleum Products in Samples of Soils, Grounds, Bottom Sediments, Silts, Sewage Sludge, Production and Consumption Waste by the Gravimetric Method]. Moscow, Federal'nyi tsentr analiza i otsenki tekhnogennogo vozdeistviia Publ., 2010. 18 p. (in Russian).

14. Stroganova M. N., Agarkova M. G. Urban Soils: Learning Experience and Systematics. Eurasian Soil Science, 1992, no. 7, pp. 16–24 (in Russian).

15. Stroganova M. N., Myagkova A. D., Prokof’eva T. V. The Role of Soils in Urban Ecosystems. Eurasian Soil Science, 1997, vol. 30, no. 1, pp. 82–86.

16. Praktikum po mikrobiologii. Pod red. A. I. Netrusova [A. I. Netrusov, ed. Workshop in Microbiology]. Moscow, Akademiya Publ., 2005. 608 p. (in Russian).

17. Fokina A. I., Ashikhmina T. Ya., Domracheva L. I., Gornostaeva E. A. Heavy Metals as a Factor of Metabolism Change in Microorganisms (Review). Theoretical and Applied Ecology, 2015, no. 2, pp. 5–17 (in Russian).

18. Chirkin L. A. Rentgenofluorescentnyj analiz ob#ektov okruzhajushhej sredy: Uchebnoe posobie [X-ray Fluorescence Analysis of Environmental Objects: Textbook. Allowance]. Vladimir, Izdatel'stvo Vladimirskogo gosudarstvennogo universiteta, 2009. 57 p. (in Russian).

19. Alaboudi K., Ahmeda B., Brodie G. Phytoremediation of Pb and Cd Contaminated Soils by Using Sunflower (Helianthus annuus) Plant. Annals of Agricultural Sciences, 2018, vol. 63, iss. 1, pp. 123–127. DOI: 10.1016/j.aoas.2018.05.007

20. Ashraf M. Y., Ashraf M., Mehmood K., Akhtar J., Hussain F., Arshad M. Phytoremediation of Saline Soils for Sustainable Agricultural Productivity. In: M. Ashraf, M. Ozturk, M. S. A. Ahmad, eds. Plant Adaptation and Phytoremediation. Dordrecht, Springer, 2010, pp. 335–355. DOI: 10.1007/978-90-481-9370-7_15

21. Deng S., Caddell D., Yang J., Dahlen L., Washington L., Coleman-Derr D. Genome Wide Association Study Reveals Plant Loci Controlling Heritability of the Rhizosphere Microbiome. BioRxiv, 2020, pp. 1–24. DOI: 10.1101/2020.02.21.960377

22. Dhiman S. S., Zhao X., Li J., Kim D., Kalia V. C., Kim I.-W., Kim J. Y., Lee J.-K. Metal Accumulation by Sunflower (Helianthus annuus L.) and the Efficacy of its Biomass in Enzymatic Saccharification. PLoS ONE, 2017, vol. 12, pp. e0175845. DOI: 10.1371/journal.pone.0175845

23. Govarthanan M., Mythili R., Selvankumar T., Kamala-Kannan S., Kim H. Myco-phytoremediation of Arsenic- and Lead-contaminated Soils by Helianthus annuus and Wood Rot Fungi, Trichoderma sp. Isolated from Decayed Wood. Ecotoxicology and Environmental Safety, 2018, vol. 151, pp. 279–284. DOI: 10.1016/j.ecoenv.2018.01.020

24. Grishko V. N., Syshchikova O. V. Streptomyces Communities in Soils Polluted With Heavy Metals. Eurasian Soil Science, 2009, vol. 42, no. 2, pp. 217–224. DOI: 10.1134/S1064229309020136

25. Hemida S. K., Omar S. A., Abdel-Mallek A. Y. Microbial Populations and Enzyme Activity in Soil Treated With Heavy Metals. Water, Air, Soil Pollution, 1997, vol. 95, no. 1–4, pp. 13–22.

26. Joynt J., Bischoff M., Turco R., Konopka A., Nakatsu C. H. Microbial Community Analysis of Soils Contaminated With Lead, Chromium and Petroleum Hydrocarbons. Microbial Ecology, 2006, vol. 51, no. 2, pp. 209–219.

27. Kolbas A., Mench M., Herzig R., Nehnevajova E., Bes C. M. Copper Phytoextraction in Tandem With Oilseed Production Using Commercial Cultivars and Mutant Lines of Sunflower. International J. of Phytoremediation, 2011, vol. 13, pp. 55–76. DOI: 10.1080/15226514.2011.568536

28. Kötschau A., Büchel G., Einax J. W., von Tümpling W., Merten D. Sunflower (Helianthus annuus): Phytoextraction Capacity for Heavy Metals on a Mining-influenced Area in Thuringia, Germany. Environmental Earth Sciences, 2014, vol. 72, iss. 6, pp. 2023–2031. DOI: 10.1007/ s12665-014-3111-2

29. Leff J. W., Lynch R. C., Kane N. C., Fierer N. Plant Domestication and the Assembly of Bacterial and Fungal Communities Associated With Strains of the Common Sunflower, Helianthus annuus. New Phytologist, 2017, vol. 214, pp. 412–423. DOI: 10.1111/nph.14323

30. Lenart-Boroń A., Boroń P. The Effect of Industrial Heavy Metal Pollution on Microbial Abundance and Diversity in Soils – A Review. In: M. C. Hernandez-Soriano, ed. Environmental Risk Assessment of Soil Contamination Soil. Rijeka, InTech, 2014, pp. 759–783. DOI: 10.5772/57406

31. Mench M., Dellise M., Bes C. M., Marchand L., Kolbas A., Le Coustumer Ph., Oustrière N. Phytomanagement and Remediation of Cu-contaminated Soils by High Yielding Crops at a Former Wood Preservation Site: Sunflower Biomass and Ionome. Frontiers in Ecology and Evolution, 2018, vol. 6, Article 123. DOI: 10.3389/fevo.2018.00123

32. Mortvedt J. J. Heavy Metal Contaminants in Inorganic and Organic Fertilizers. In: C. Rodriguez-Barrueco, ed. Fertilizers and Environment. Dordrecht, Kluwer Academic Publishers, 1996, pp. 5–11.

33. Nehnevajova E., Herzig R., Bourigault C´E., Bangerter S., Schwitzguebel J.-P. Stability of Enhanced Yield and Metal Uptake by Sunflower Mutants for Improved Phytoremediation. International J. of Phytoremediation, 2009, vol. 11, pp. 329–346. DOI: 10.1080/15226510802565394

34. Rizwan M., Ali S., Rizvi H., Rinklebe J., Tsang D. C. W., Meers E., Ok Y. S., Ishaque W. Phytomanagement of Heavy Metals in Contaminate Soils Using Sunflower – A Review. Critical Reviews in Environmental Science and Technology, 2016, vol. 46, pp. 1498–1528. DOI: 10.1080/10643389.2016.1248199

35. Schlemper T. R., Leite M. F. A., Luccheta A. R., Shimels M., Bouwmeester H. J., van Veen J. A., Kuramae E. E. Rhizobacterial Community Structure Differences Among Sorghum Cultivars in Different Growth Stages and Soils. FEMS Microbiology Ecology, 2017, vol. 93, no. 8, pp. 1–11. DOI: 10.1093/femsec/fix096

36. Schlemper T. R., van Veen J. A., Kuramae E. E. Co-variation of Bacterial and Fungal Communities in Different Sorghum Cultivars and Growth Stages is Soil Dependent. Microbial Ecology, 2018, vol. 76, iss. 1, pp. 205–214. DOI: 10.1007/s00248-017-1108-6

37. Shirokikh I. G., Solov’eva E. S., Ashikhmina T. Y. Actinomycete Complexes in Soils of Industrial and Residential Zones in the City of Kirov. Eurasian Soil Science, 2014, vol. 47, no. 2, pp. 89–95. DOI: 10.1134/S1064229313100062

38. Singh A., Prasad M. Reduction of Heavy Metal Load in Food Chain: Technology Assessment. Reviews in Environmental Science and Biotechnology, 2011, vol. 10, no. 3, pp. 199–214. DOI: 10.1007/s11157-011-9241-z

39. Tejeda-Agredano M. C., Gallego S., Vila J., Grifoll M., Ortega-Calvo J. J., Cantos M. Influence of the Sunflower Rhizosphere on the Biodegradation of PAHs in Soil. Soil Biology and Biochemistry, 2013, vol. 57, pp. 830–840. DOI: 10.1016/j.soilbio.2012.08.008

40. Terekhova V. A., Shitikov V. K., Ivanova A. E., Kydralieva K. A. Assessment of the Ecological Risk of Technogenic Soil Pollution on the Basis of the Statistical Distribution of the Occurrence of Micromycete Species. Russian J. Ecology, 2017, vol. 48, no. 5, pp. 417–424. DOI: 10.1134/S1067413617050125

41. Zhang X., Ma M., Zhenzhen W.U., Zhang Z., Gao R., Shi L. Effects of Helianthus annuus Varieties on rhizosphere Soil Enzyme Activities and Microbial Community Functional Diversity of Saline-alkali Land in Xinjiang. Acta Ecologica Sinica, 2017, vol. 37, iss. 5, pp. 1659–1666. DOI: 10.5846/stxb201510172095


Review

For citations:


Muratova A.Yu., Zelenova N.A., Sungurtseva I.Yu., Gorelova S.V., Kolbas A.P., Pleshakova Ye.V. Comparative Study of the Rhizospheric Microflora of Sunflower Cultivars Helianthus annuus (Asteráceae, Magnoliópsida) Grown on Soils with Anthropogenic Polyelemental Anomalies. Povolzhskiy Journal of Ecology. 2020;(4):442-458. (In Russ.) https://doi.org/10.35885/1684-7318-2020-4-442-458

Views: 479


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)