Preview

Povolzhskiy Journal of Ecology

Advanced search

Spatial structure of Colchicum s. l. (Colchicaceae, Liliopsida) populations in European Russia

https://doi.org/10.35885/1684-7318-2025-3-300-317

Abstract

   Analysis of the spatial structure of 43 populations of five species of geophytic ephemeroids of European Russia, Colchicum s. l, was carried out in 2021–2024. The distribution patterns of individuals, displayed by the Ripley function L(r)–r, were implemented in the spatstat package for the R programming language. Within the range of the genus, the occurrence frequency of populations with a random distribution type increased from north to south. In C. laetum and C. bulbocodium subsp. versicolor, which have ranges extended along geographic longitude on the Russian Plain, the populations with a contagious type of distribution of individuals were located exclusively along their northern and southern borders. Such a pattern was not observed in the species growing in the North Caucasus and mountainous Crimea. It has been shown that a random type of the spatial distribution of individuals of geophytic ephemeroids indicates homogeneity and optimality of growing conditions, and any deviations from it occur as a result of the unfavorable impact of various environmental factors. At least in Colchicum species on the Russian Plain, not so much the microrelief, microclimate or other locally manifested environmental factors, but rather the global gradients of natural and climatic conditions across the species’ range are dominant in determining the type of the distribution of individuals in populations. In those species of the genus, whose range covers mainly mountains and foothills, on the contrary, local environmental conditions probably determine the distribution type of individuals in space to a greater extent. Altitude above sea level is not a limiting factor for the distribution type of individuals in the populations of Colchicum species.

About the Authors

A. S. Kashin
Saratov State University
Russian Federation

Alexandr S. Kashin

Botanical Garden of Saratov State University

410012; 83 Astrakhanskaya St.; Saratov



V. S. Epifanov
Saratov State University
Russian Federation

Vladimir S. Epifanov

410012; 83 Astrakhanskaya St.; Saratov



I. V. Shilova
Saratov State University
Russian Federation

Irina V. Shilova

410012; 83 Astrakhanskaya St.; Saratov



S. F. Efimenko
Saratov State University
Russian Federation

Saveliy F. Efimenko

410012; 83 Astrakhanskaya St.; Saratov



R. A. Murtazaliev
Precaspian Institute of Biological Resources of the Dagestan Federal Research Center, Russian Academy of Sciences
Russian Federation

Ramazan A. Murtazaliev

367000; 45 Gadzhieva St.; Makhachkala



A. O. Kondratieva
Saratov State University
Russian Federation

Anna O. Kondratieva

410012; 83 Astrakhanskaya St.; Saratov



References

1. Baddeley A., Rubak E., Turner R. Turner Spatial Point Patterns: Methodology and Applications with R. London, CRC Press, 2015. 810 p.

2. Batista A. P. B., Scolforo H. F., de Mello J. M., Guedes M. C., Terra M. C. N. S., Scalon J. D., Gomide L. R., Scolforo P. G. V., Cook R. L. Spatial association of fruit yield of Bertholletia excelsa Bonpl. trees in eastern Amazon. Forest Ecology and Management, 2019, vol. 441, pp. 99–105. doi: 10.1016/j.foreco.2019.03.043

3. Besag J., Diggle J. Simple Monte Carlo tests for spatial pattern. Applied Statistics, 1977, vol. 26, iss. 3, pp. 327–333. doi: 10.2307/2346974

4. Brickell C. D. Genus Colchicum L., Genus Merendera Ramond. In: Davis P. H., ed. Flora of Turkey and the East Aegean Islands. Edinburgh, Edinburgh University Press, 1984, vol. 8, pp. 329–360.

5. Dumacheva E. V., Cherniavskih V. I. Spatial structure and the age spectrum cenopopulations Medicago L. in ravine complex of Southern Central Russian upland. Sovremennye problemy nauki i obrazovaniia, 2014, iss. 4, article no. 13868 (in Russian).

6. Elizeário dos Santos L., Vasconcellos Gama J. R., Araújo da Silva A., Gomes da Silva M. Population structure of Heteropsis spp. Kunth (Titica vine) in the Tapajós national forest, Pará-Brazil. Revista Árvore, 2019, vol. 43, iss. 6, article no. e430603. doi: 10.1590/1806-90882019000600003

7. Endress B. A., Averett J. P., Steinmetz S., Quaempts E. J. Forgotten forbs: Standard vegetation surveys underrepresent ecologically and culturally important forbs in a threatened grassland ecosystem. Conservation Science and Practice, 2022, vol. 4, iss. 10, article no. e12813. doi: 10.1111/csp2.12813

8. Fardeeva M. B. Long-term dynamics of spatial and temporal population structure of Orchis militaris L. (Orchidaceae Juss.) Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2013, vol. 15, no. 3-1, pp. 352–357 (in Russian).

9. Fardeeva M. B. Spatial heterogeneity of populations of tuber-forming orchids and methods of its study by the example of Neottianthe cucullata (l.) Schlechter. Ekosistemy, 2018, no. 16, pp. 75–85 (in Russian).

10. Fardeeva M. B., Chizhikova N. A., Krasilnikova O. V. Long-term dynamics of the ontogenetic and spatial structure in Cypripedium calceolus L. cenopopulations Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2010, vol. 152, no. 3, pp. 159–173 (in Russian).

11. Fardeeva M. B., Islamova G. R., Chizhova N. A. Spatial and ontogenetic structure of coenopopulations of Vaccinium myrtillus (Ericaceae) on the southern border of the area (Tatarstan Republic). Rastitelnye resursy, 2014, vol. 50, iss. 3, pp. 376–397 (in Russian).

12. Fernández-Habas J., Fernández-Rebollo P., Casado M. R., Moreno A. M. G., Abellanas B. Spatio-temporal analysis of oak decline process in open woodlands: A case study in SW Spain. Journal of Environmental Management, 2019, vol. 248, article no. 109308. doi: 10.1016/j.jenvman.2019.109308

13. Gauthier P., Pons V., Letourneau A., Klesczewski M., Papuga G., Thompson J. Combining population monitoring with habitat vulnerability to assess conservation status in populations of rare and endangered plants. Journal for Nature Conservation, 2017, vol. 37, pp. 83–95. doi: 10.1016/j.jnc.2017.03.005

14. Gu L., Gong Z., Li W-z. Spatial patterns and storage composition of woody debris in a natural secondary forest dominated by Pinus tabulaeformis on Loess Plateau, China. Journal of Mountain Science, 2017, vol. 14, iss. 9, pp. 1839–1851. doi: 10.1007/s11629-016-4141-x

15. Ipatov V. S., Kirikova L. A. Phitocenology. Saint Petersburg, Saint Petersburg State University Publ., 1997. 316 p. (in Russian).

16. Kashin A. S., Petrova N. A., Shilova I. V. State of cenopopulations and morphological variability of Tulipa gesneriana (Liliaceae) in the northern Lower Volga region. Botanicheskii zhurnal, 2016, vol. 101, no. 12, pp. 1430–1465 (in Russian). doi: 10.1134/S0006813616120061

17. Kiss R., Lukacs K., Godo L., Toth A., Miglecz T., Szel L., Demeter L., Deak B., Valko O. Understanding the effects of weather parameters on the population dynamics of an endangered geophyte supports monitoring efficiency. Scientific Reports, 2024, vol. 14, article no. 25974. doi: 10.1038/s41598-024-76942-5

18. Kondratieva A. O., Parkhomenko A. S., Bogoslov A. V., Shilova I. V., Kashin A. S. Spatial structure of Globularia bisnagarica L. (Plantaginaceae, Magnoliopsida) coenopopulations. Povolzhskiy Journal of Ecology, 2021, no. 1, pp. 35–46. doi: 10.35885/1684-7318-2021-1-35-46

19. Korolyuk A. Yu., Dulepova N. A., Yamalov S. M., Lebedeva M. V., Golovanov Y. M., Zolotareva N. V. Patterns of changes in the composition of petrophytic vegetation in Southern Ural and adjacent territories on a moistening gradient. Contemporary Problems of Ecology, 2020, vol. 13, iss. 5, pp. 505–513. doi: 10.1134/S1995425520050066

20. Maciel-Najera J. F., Hernandez-Velasco J., Gonzalez-Elizondo M. S., Hernandez-Díaz J. C., Lopez-Sanchez C. A., Antúnez P., Bailon-Soto C. E., Wehenkel C. Unexpected spatial patterns of natural regeneration in typical uneven-aged mixed pine-oak forests in the Sierra Madre Occidental, Mexico. Global Ecology and Conservation, 2020, vol. 23, article no. e01074. doi: 10.1016/j.gecco.2020.e01074

21. Martins A., Freitas H., Costa S. Corema album: Unbiased dioecy in a competitive environment. Plant Biology, 2017, vol. 19, iss. 5, pp. 824–834. doi: 10.1111/plb.12584

22. Mirkin B. M., Naumova L. G., Solomeshch A. I. Modern Vegetation Science. Moscow, Logos, 2001. 264 p. (in Russian).

23. Oganezova G. G. Problems of the Genus Colchicum L. Colchicum sensu lato or Colchicum sensu strict in Light of the Categories of Discontinuity and Continuity. Yerevan, Gitutyun, 2019. 176 p. (in Russian).

24. Persson K., Petersen G., Hoyo A., Seberg O., Jorgensen T. A phylogenetic analysis of the genus Colchicum L. (Colchicaceae) based on sequences from six plastid regions. Taxon, 2011, vol. 60, iss. 5, pp. 1349–1365. doi: 10.1002/tax.605011

25. R Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing, 2024. Available at: http://www.R-project.org/ (accessed December 7, 2024).

26. Romanova E. P., Alekseeva N. N., Arshinova M. A. Physical Geography of Continents and Oceans : in 2 vols. Vol. 1: Physical Geography of Continents: in 2 books. Book 1: Differentiation and Development of Land Landscapes on Earth. Europe. Asia. Moscow, Academy, 2014. 459 p. (in Russian).

27. Saveliev A. A., Mukharamova S. S., Chizhikova N. A., Pilyugin A. G. Theory of Spatial Point Processes in Ecology and Natural Resource Management (using the R package) : Textbook. Kazan, Kazan University Publ., 2014. 146 p. (in Russian).

28. Schneider E. E., Sánchez Meador A. J., Covington W. W. Reference conditions and historical changes in an unharvested ponderosa pine stand on sedimentary soil. Restoration Ecology, 2016, vol. 24, iss. 2, pp. 212–221. doi: 10.1111/rec.12296

29. The Red Data Book of the Russian Federation (Plants and Fungi). Moscow, VNII “Ekologiya”, 2024. 944 p. (in Russian).

30. Uranov A. A., Zaugolnova L. B., Smirnova O. V., Bogdanova A. G., Grigorieva N. M., Egorova V. N., Ermakova I. M., Zhukova L. A., Matveev A. R., Mikhailova N. F., Sugorkina N. S., Cheburaeva A. N. Plant Cenopopulations (Development and Interactions). Moscow, Nauka, 1977. 131 p. (in Russian).

31. Vakhrusheva L. P. Spacial structure of coenopopulation of Colchicum ancyrense in petrophyte steppe of Krasnogvardeyskiy region (Crimea). Optimization and Protection of Ecosystems, 2011, iss. 5, pp. 52–57 (in Russian).

32. Wang M., Zhang S., Chu G. Point pattern analysis of different life stages of Haloxylon ammodendron in Desert-oasis Ecotone. Polish Journal of Environmental Studies, 2014, vol. 23, iss. 6, pp. 2271–2277. doi: 10.15244/pjoes/26965

33. Zenkina T. E., Bushueva A. D. Features of the spatial structure of the cenopopulation of Halocnemum strobilaceum (Pall.) Bieb. in Elton Natural Park. Proceedings of the Mordovia State Nature Reserve, 2020, vol. 25, pp. 321–329 (in Russian).

34. Zenkina T. E., Ilina V. N. Structure features of Artemisia salsoloides Willd. (Asteraceae) coenotic populations in the Samara region. Samara Journal of Science, 2017, vol. 6, no 4, pp. 41–47 (in Russian).

35. Zenkina T. E., Ilina V. N. Features of the spatial and ontogenetic structure of the Stipa korshinskyi Roshev. (Poaceae) cenopopulation. Samara Journal of Science, 2019, vol. 8, no 1, pp. 26–30 (in Russian). doi: 10.24411/2309-4370-2019-11103

36. Zhou Q., Shi H., Shu X., Xie F., Zhang K., Zhang Q., Dang H. Spatial distribution and interspecific associations in a deciduous broad‐leaved forest in north‐central China. Journal of Vegetation Science, 2019, vol. 30, iss. 6, pp. 1153–1163. doi: 10.1111/jvs.12805


Review

For citations:


Kashin A.S., Epifanov V.S., Shilova I.V., Efimenko S.F., Murtazaliev R.A., Kondratieva A.O. Spatial structure of Colchicum s. l. (Colchicaceae, Liliopsida) populations in European Russia. Povolzhskiy Journal of Ecology. 2025;(3):300-317. (In Russ.) https://doi.org/10.35885/1684-7318-2025-3-300-317

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)