Transformation of the phenological norm of the start date of spawning migrations of Bombina bombina and Pelophylax ridibundus (Amphibia, Anura) in the middle reach of the Medveditsa river
https://doi.org/10.35885/1684-7318-2025-3-286-299
Abstract
An analysis was carried out of the dates of the hibernation end and the beginning of spawning migrations of the fire-bellied toad and marsh frog in the valley of the middle reach of the Medveditsa river (Don basin, Saratov region) in 2023–2025. The progressive development of spring processes in the populations of these species in 2024 and their occurrence according to the false spring type in 2023 and 2025 were established. The current phenological results were compared with the retrospective time data series from 1892 to 2020 using the method of reconstructing the dynamics of the mean ten-day temperature of the environment in hibernation biotopes. The relative stability of the phenological norm of the date of the beginning of spawning migrations of the two amphibian species in the period before the onset of global warming (from 1892 to 1960) and a shift of this date to earlier dates in the period from 1961 to 2020 (by 5 days) are shown. At the end of the first quarter of the 21st century, there was a sharp acceleration of this process (a shift of 10 days relative to the current phenological norm (mean for 1991–2020)).
About the Authors
M. V. YermokhinRussian Federation
Mikhail V. Yermokhin
Faculty of Biology; Department of Animal Morphology and Ecology
410012; 83 Astrakhanskaya St.; Saratov
V. V. Tabachishin
Russian Federation
Vasiliy V. Tabachishin
410012; 83 Astrakhanskaya St.; Saratov
V. G. Tabachishin
Russian Federation
Vasily G. Tabachishin
410028; 24 Rabochaya St.; Saratov
References
1. Arietta A. Z. A., Freidenburg L. K., Urban M. C., Rodrigues S. B., Rubinstein A., Skelly D. K. Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: A 20‐year study. Ecography, 2020, vol. 43, iss. 12, pp. 1791–1800. doi: 10.1111/ecog.05297
2. Beebee T. Amphibian breeding and climate. Nature, 1995, vol. 374, pp. 219–220. doi: 10.1038/374219a0
3. Blaustein A. R., Root T. R., Kiesecker J. M., Belden L. K., Olson D. H., Green D. M. Amphibian phenology and climate change. Conservation Biology, 2002, vol. 16, iss. 6, pp. 1454–1455. doi: 10.1046/j.1523-1739.2002.t01-1-02109.x
4. Carroll E. A., Sparks T. H., Collinson N., Beebee T. J. C. Influence of temperature on the spatial distribution of first spawning dates of the common frog (Rana temporaria) in the UK. Global Change Biology, 2009, vol. 15, iss. 2, pp. 467–473. doi: 10.1111/j.1365-2486.2008.01726.x
5. Cayuela H., Griffiths R. A., Zakaria N., Arntzen J. W., Priol P., Lena J.-P., Besnard A., Joly P. Drivers of amphibian population dynamics and asynchrony at local and regional scales. Journal of Animal Ecology, 2020, vol. 89, iss. 6, pp. 1350–1364. doi: 10.1111/1365-2656.13208
6. Cohen J. M., Lajeunesse M. J., Rohr J. R. A global synthesis of animal phenological responses to climate change. Nature Climate Change, 2018, vol. 8, iss. 3, pp. 224–228. doi: 10.1038/s41558-018-0067-3
7. Corn P.S. Straight-line drift fences and pitfall traps. In: Measuring and Monitoring Biological Diversity: Standard Methods for Amphibian. Moscow, KMK Scientific Press, 2003, pp. 117–127 (in Russian).
8. Corn P. S. Climate change and amphibians. Animal Biodiversity and Conservation, 2005, vol. 28, iss. 1, pp. 59–67. doi: 10.32800/abc.2005.28.0059
9. Corn P. S., Bury R. B. Sampling Methods for Terrestrial Amphibians and Reptilies. Portland, Pacific Northwest Research Station, 1990. 34 p.
10. Ficetola G. F., Maiorano L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia, 2016, vol. 181, iss. 3, pp. 683–693. doi: 10.1007/s00442-016-3610-9
11. Forti L. R., Hepp F., de Souza J. M., Protazio A., Szabo J. K. Climate drives anuran breeding phenology in a continental perspective as revealed by citizen-collected data. Diversity and Distributions, 2022, vol. 28, iss. 10, pp. 2094–2109. doi: 10.1111/ddi.13610
12. Gibbs J. P., Breisch A. R. Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology, 2001, vol. 15, iss. 4, pp. 1175–1178. doi: 10.1046/j.1523-1739.2001.0150041175.x
13. Green D. M. Amphibian breeding phenology trends under climate change: Predicting the past to forecast the future. Global Change Biology, 2017, vol. 23, iss. 2, pp. 646–656. doi: 10.1111/gcb.13390
14. Hammer Ø., Harper D. A. T., Ryan P. D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 2001, vol. 4, no. 1, article no. 4.
15. Ivanov G. A., Yermokhin M. V., Tabachishin V. V., Tabachishin V. G. Reproductive ecology of Anuran Amphibians: Effects of internal and external factors. Current Studies in Herpetology, 2023, vol. 23, iss. 1–2, pp. 3–26 (in Russian). doi: 10.18500/1814-6090-2023-23-1-2-3-26
16. Kaybeleva E. I., Yermokhin M. V., Kondratiev E. N., Mosolova E. Yu., Tabachishin V. G., Shlyakhtin G. V. Amphibian scientific collection of the Zoological museum of Saratov State University as the basis for the regional cadastre. Current Studies in Herpetology, 2019, vol. 19, iss. 3–4, pp. 95–124 (in Russian). doi: 10.18500/1814-6090-2019-19-3-4-95-124
17. Lenzi O., Grossenbacher K., Zumbach S., Lüscher B., Althaus S., Schmocker D., Recher H., Thoma M., Ozgul A., Schmidt B. R. Four decades of phenology in an alpine amphibian: Trends, stasis, and climatic drivers. Peer Community Journal, 2023, vol. 3, article no. e15. doi: 10.24072/pcjournal.240
18. Polukonova A. V., Djomin A. G., Polukonova N. V., Yermokhin M. V., Tabachishin V. G. A molecular-genetic study of Spadefoot toad Pelobates fuscus (Laurenti, 1768) local populations from the Medveditsa river valley (Saratov region) by mtDNA – CytB gene. Current Studies in Herpetology, 2013, vol. 13, iss. 3–4, pp. 117–121 (in Russian).
19. Prather R. M., Dalton R. M., Barr B., Blumstein D. T., Boggs C. L., Brody A. K., Inouye D. W., Irvin R. E., Martin J. G. A., Smith R. J., Van Vuren D. H., Wells C. P., Whiteman H. H., Inouye B. D., Underwood N. Current and lagged climate affects phenology across diverse taxonomic groups. Proceedings of the Royal Society B: Biological Sciences, 2023, vol. 290, no. 1990, article no. 20222181. doi: 10.1098/rspb.2022.2181
20. Ruchin A., Artaev O., Sharapova E., Ermakov O., Zamaletdinov R., Korzikov V., Bashinsky I., Pavlov A., Svinin A.O., Ivanov A., Tabachishin V., Klenina A., Ganshchuk S., Litvinov N., Chetanov N., Vlasov A., Vlasova O. Occurrence of the amphibians in the Volga, Don River basins and adjacent territories (Russia): Research in 1996–2020. Biodiversity Data Journal, 2020, vol. 8, article no. e61378. doi: 10.3897/BDJ.8.e61378
21. Scott W. A., Pithart D., Adamson J. K. Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria. Journal of Herpetology, 2008, vol. 42, iss. 1, pp. 89–96. doi: 10.1670/07-022.1
22. Sparks T., Tryjanowski P., Cooke A., Crick H., Kuzniak S. Vertebrate phenology at similar latitudes: Temperature responses differ between Poland and the United Kingdom. Climate Research, 2007, vol. 34, iss. 2, pp. 93–98. doi: 10.3354/cr034093
23. Terhivuo J. Phenology of spawning for the common frog (Rana temporaria L.) in Finland from 1846 to 1986. Annales Zoologici Fennici, 1988, vol. 25, no. 2, pp. 165–175.
24. Todd B. D., Scott D. E., Pechmann J. H. K., Gibbons J. W. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings of the Royal Society B: Biological Sciences, 2011, vol. 278, iss. 1715, pp. 2191–2197. doi: 10.1098/rspb.2010.1768
25. Tryjanowski P., Rybacki M., Sparks T. Changes in the first spawning dates of common frogs and common toads in Western Poland in 1978–2002. Annales Zoologici Fennici, 2003, vol. 40, no. 6, pp. 459–464.
26. Walpole A. A., Bowman J., Tozer D. C., Badzinski D. S. Community-level response to climate change: Shifts in anuran calling phenology. Herpetological Conservation and Biology, 2012, vol. 7, iss. 2, pp. 249–257.
27. Yermokhin M. V., Tabachishin V. G. Abundance accounting result convergence of Pelobates fuscus (Laurenti, 1768) migrating toadlets at full and partial enclosing of a spawning water-body by drift fences with pitfalls. Current Studies in Herpetology, 2011, vol. 11, iss. 3–4, pp. 121–131 (in Russian).
28. Yermokhin M. V., Tabachishin V. G. An abnormally early hibernation ending of the Redbellied toad (Bombina bombina) (Discoglossidae, Anura) in the populations of the Medveditsa river valley (Saratov region). Povolzhskiy Journal of Ecology, 2021, no. 1, pp. 89–96 (in Russian). doi: 10.35885/1684-7318-2021-1-89-96
29. Yermokhin M. V., Tabachishin V. G. Phenological changes in the wintering end date of Pelophylax ridibundus (Pallas, 1771) (Ranidae, Anura) in the Medveditsa river valley (Saratov region) under conditions of climate transformation. Povolzhskiy Journal of Ecology, 2022a, no. 4, pp. 474–482 (in Russian). doi: 10.35885/1684-7318-2022-4-474-482
30. Yermokhin M. V., Tabachishin V. G. False spring in the Southeastern European Russia and anomalies of the phenology of spawing migrations of the Pallas’ spadefoot toad Pelobates vespertinus (Pelobatidae, Amphibia). Russian Journal of Herpetology, 2022b, vol. 29, no. 4, pp. 206–214. doi: 10.30906/1026-2296-2022-29-4-206-214
31. Yermokhin M. V., Tabachishin V. G. Environmental predictors of the onset of spawning migration in Pelobates vespertinus (Anura: Pelobatidae). South American Journal of Herpetology, 2023, vol. 29, pp. 18–26. doi: 10.2994/SAJH-D-21-00003.1
32. Yermokhin M. V., Tabachishin V. G. Phenology of the spawning migration start dates of anuran amphibians (Anura, Amphibia) in the river valleys of Saratov Right Bank region. Theoretical and Applied Ecology, 2024, no. 1, pp. 191–198 (in Russian). doi: 10.25750/1995-4301-2024-1-191-198
33. Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Structural dynamics of the spawning anuran taxocenoses in floodplain lakes of the Medveditsa river valley (Saratov region). Current Studies in Herpetology, 2017a, vol. 17, iss. 3–4, pp. 147–156 (in Russian). doi: 10.18500/1814-6090-2017-17-3-4-147-156
34. Yermokhin M. V., Ivanov G. A., Tabachishin V. G. Structure transformation of the anuran amphibian spawning communities in floodplain lakes of the Medveditsa river valley (Saratov Region) under conditions of long-term reduction of water content. Povolzhskiy Journal of Ecology, 2018, no. 4, pp. 404–417. doi: 10.18500/1684-7318-2018-4-404-417
35. Zellweger F., De Frenne P., Lenoir J., Rocchini D., Coomes D. Advances in microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 2019, vol. 34, iss. 4, pp. 327–341. doi: 10.1016/j.tree.2018.12.012
Review
For citations:
Yermokhin M.V., Tabachishin V.V., Tabachishin V.G. Transformation of the phenological norm of the start date of spawning migrations of Bombina bombina and Pelophylax ridibundus (Amphibia, Anura) in the middle reach of the Medveditsa river. Povolzhskiy Journal of Ecology. 2025;(3):286-299. (In Russ.) https://doi.org/10.35885/1684-7318-2025-3-286-299





































