Preview

Povolzhskiy Journal of Ecology

Advanced search

Genus Naja (Elapidae, Serpentes) (True cobras): Current systematics, toxinological characteristics, and ecological groups

https://doi.org/10.35885/1684-7318-2025-3-268-285

Abstract

   This review of world literature presents the topical taxonomy, zoogeography and toxinology of the most dangerous and poisonous snakes of the genus Naja (True cobras), including questions of origin, distribution and mechanism of toxic effect in the ecological group of “spitting cobras”. Cobras are among the most famous snakes in the world, but cobra taxonomy remained surprisingly poorly understood until the late 20th century. The application of molecular-phylogenetic research methods has led to the “Afro–Asian race for diversity”, i.e. an increase in the number of recognized African and Asian cobra species, which required the truly “revolutionary” introduction of the subgenera rank for herpetology, while maintaining the nomenclatural stability of the group of iconic species. The cobra taxonomy issues have not only an important theoretical aspect, but also purely applied (medical and zootoxinological) ones. Incomplete (or questionable) under-standing of the taxonomic position of some species may lead to dramatic errors in the treatment of snakebite poisonings, and most often – to the incorrect use of monovalent antisnake serums, since often closely and similar snake species may have poisons differing in composition, and therefore in the mechanism of action. Cobras belong to the group of primarily poisonous armed actively poisonous animals, with plastic adaptation to the environment. The current state of re-search of the unique set of polypeptide toxins in cobra venom, which serve as chemical factors (allomones) of interspecies (allelochemical) interactions, is of great theoretical and practical significance. Similar examples could be found among animals of many systematic groups, but cobras have a surprisingly balanced variety of hunting and defense methods using their poisonous apparatus – parenteral poison administration during a bite and “spitting” during remote contact.

About the Authors

D. B. Gelashvili
Lobachevsky State University of Nizhni Novgorod
Russian Federation

David B. Gelashvili

Institute of Biology and Biomedicine; Department of Ecology

603950; 23 Gagarin Avenue; Nizhni Novgorod



E. B. Romanova
Lobachevsky State University of Nizhni Novgorod
Russian Federation

Elena B. Romanova

603950; 23 Gagarin Avenue; Nizhni Novgorod



References

1. Adamude F. A., Dingwoke E. J., Abubakar M. S., Ibrahim S., Mohamed G., Klein A., Sallau A. B. Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon, 2021, vol. 197, pp. 24–32. doi: 10.1016/j.toxicon.2021.03.014

2. Berthе R. A., de Pury S., Bleckmann H., Westhoff G. Spitting cobras adjust their venom distribution to target distance. Journal of Comparative Physiology A, 2009, vol. 195, pp. 753–757. doi: 10.1007/s00359-009-0451-6

3. Broadley D. G. The snouted cobra, Naja annulifera, a valid species in southern Africa. Journal of the Herpetological Association of Africa, 1995, vol. 44, no. 2, pp. 26–32.

4. Ceriaco L. M. P., de Sá S. A. C., Banderira S., Valério H., Stanley E. L., Kuhn A. L., Marques M. P., Vindum J. V., Blackburn D. C., Bauer A. M. Herpetological survey of Iona National Park and Namibe Regional Natural Park, with a synoptic list of the amphibians and reptiles of Namibe Province, southwestern Angola. Proceedings of the California Academy of Sciences, 2016, vol. 63, iss. 4, pp. 15–61.

5. Chien K.-Y., Chiang C.-M., Hseu Y.-C., Vyas A. A., Rule G. S., Wu W. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersion. Journal of Biological Chemistry, 1994, vol. 269, iss. 20, pp. 14473–14483. doi: 10.1016/S0021-9258(17)36647-4

6. Clements R., Li D. Regulation and non-toxicity of the spit from the pale spitting spider Scytodes рallida (Araneae: Scytodidae). Ethology, 2005, vol. 111, iss. 3, pp. 311–321. doi: 10.1111/j.1439-0310.2004.01064.x

7. Fry B. G., Wuster W., Kini R. M., Brusic V., Khan A., Venkataraman D., Rooney A. P. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. Journal of Molecular Evolution, 2003, vol. 57, iss. 1, pp. 110–129. doi: 10.1007/s00239-003-2461-2

8. Gelashvili D. B., Krylov V. N., Romanova E. B. Zootoxinology: Bioecological and Biomedical Aspects. Nizhnij Novgorod, Lobachevsky State University of Nizhni Novgorod Publ., 2015. 770 p. (in Russian).

9. Grishin E. V., Sukhikh A. P., Lukyanchuk N. N., Slobodyan L. N., Lipkin V. M., Ovchinnikov Yu. A. Amino acid sequence of neurotoxin II from Naja naja oxiana venom. FEBS Letters, 1973, vol. 36, iss. 1, pp. 77–78. doi: 10.1016/0014-5793(73)80340-0

10. Grishin E. V., Sukhikh A. P., Slobodyan L. N., Ovchinnikov Yu. A., Sorokin V. M. Amino acid sequence of neurotoxin I from Naja oxiana venom. FEBS Letters, 1974, vol. 45, iss. 1-2, pp. 118–121. doi: 10.1016/0014-5793(74)80825-2

11. Kazandjian T. D., Petras D., Robinson S. D., Thiel van J., Greene H. W., Arbuckle K., Barlow A., Carter D. A., Wouters R. M., Whiteley G., Wagstaff S. C., Arias A. S., Albulescu L.-O., Plettenberg Laing A., Hall C., Heap A., Penrhyn-Lowe S., McCabe C. V., Ainsworth S., Silva da R. R., Dorrestein P. C., Richardson M. K., Gutiérrez J. M., Calvete J. J., Harrison R. A., Vetter I., Undheim E. A. B., Wüster W., Casewell N. R. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science, 2021, vol. 371, no. 6527, pp. 386–390. doi: 10.1126/science.abb9303

12. Kini R. M., Daley R. Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon, 2010, vol. 56, iss. 6, pp. 855–867. doi: 10.1016/j.toxicon.2010.07.010

13. Laborieux L. Biomechanics of venom delivery in South America’s first spitting scorpion. bioRxiv – the preprint server for Biology, 2024, article no. 605134. doi: 10.1101/2024.07.25.605134

14. Liu C.-C., You C.-H., Wang P.-J., Yu J.-S., Huang G.-J., Liu C.-H., Hsieh W.-C. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLOS Neglected Tropical Diseases, 2017, vol. 11, iss. 12, article no. e0006138. doi: 10.1371/journal.pntd.0006138

15. Louw A. I. Snake venom toxins. The amino acid sequences of three cytotoxin homologues from Naja mossambica mossambica venom. Biochimica et Biophysica Acta (BBA) – Protein Structure, 1974, vol. 336, iss. 2, pp. 481–495. doi: 10.1016/0005-2795(74)90429-2

16. Nelsen D. R., Nisani Z., Cooper A. M., Fox G. A., Gren E. C. K., Corbit A. G. Poisons, toxungens, and venoms: Redefining and classifying toxic biological secretions and the organisms that employ them. Biological Reviews, 2014, vol. 89, iss. 2, pp. 450–465. doi: 10.1111/brv.12062

17. Nisani Z., Hayes W. K. Venom-spraying behavior of the scorpion Parabuthus transvaalicus (Arachnida: Buthidae). Behavioural Processes, 2015, vol. 115, pp. 46–52. doi: 10.1016/j.beproc.2015.03.002

18. Nirthanan S., Gopalakrishnakone P., Gwee M. C. E., Khoo H. E., Kini R. M. Non-conventional toxins from Elapid venoms. Toxicon, 2003, vol. 41, iss. 4, pp. 397–407. doi: 10.1016/S0041-0101(02)00388-4

19. Osipov A. V., Utkin Y. N. Snake venom toxins targeted at the nervous system. In: Gopalakrishnakone P., Inagaki H., Vogel C.-W., Mukherjee A. K., Rahmy T. R., eds. Snake Venoms (Toxinology). Dordrecht, Springer, 2017, pp. 189–214. doi: 10.1007/978-94-007-6410-123

20. Shulepko M. A. Investigation of Ligand-receptor Interactions Using the Nicotinic Acetylcholine Receptor and Toxins from Snake Venom as Examples: Thesis Diss. Cand. Sci. (Biol.). Moscow, 2009. 24 p. (in Russian).

21. Slowinski J. B., Wüster W. A. New cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica, 2000, vol. 56, no. 2, pp. 257–270.

22. Spawls S., Branch W. R. The Dangerous Snakes of Africa: Natural History, Species Directory, Venoms and Snakebite. Sanibel Island, Ralph Curtis Books, 1995. 192 p.

23. Starkov V. G., Polyak Ya. L., Vulfius E. A., Kryukova E. V., Tsetlin V. I., Utkin Yu. N. New weak toxins from the cobra venom. Russian Journal of Bioorganic Chemistry, 2009, vol. 35, iss. 1, pp. 10–18. doi: 10.1134/S1068162009010026

24. Stockmann R., Ythier E. Scorpions of the World. Verrières-le-Buisson, N.A.P., 2010. 565 p.

25. Suter R. B., Stratton G. E. Spitting performance parameters and their biomechanical implications in the spitting spider, Scytodes thoracica. Journal of Insect Science, 2009, vol. 9, iss. 1, pp. 62–77. doi: 10.1673/031.009.6201

26. Tan C. H., Wong K. Y., Huang L.-K., Tan K. Y., Tan N. H., Wu W.-G. Snake venomics and antivenomics of Cape cobra (Naja nivea) from South Africa: Insights into venom toxicity and cross-neutralization activity. Toxins, 2022, vol. 14, iss. 12, article no. 860. doi: 10.3390/toxins14120860

27. Tan C. H., Wong K. Y., Tan N. H., Hg T. S., Tan K. Y. Distinctive distribution of secretory phospholipases A<sub>2</sub> in the venoms of Afro-Asian cobras (Subgenus: Naja, Afronaja, Boulengerina and Uraeus). Toxins, 2019, vol. 11, iss. 2, article no. 116. doi: 10.3390/toxins11020116

28. Torres A. M., Wong H. Y., Desai M., Moochhala S., Kuchel P. W., Kini R. M. Identification of a novel family of proteins in snake venoms. Purification and structural characterization of nawaprin from Naja nigricollis snake venom. Journal of Biological Chemistry, 2003, vol. 278, iss. 41, pp. 40097–40104. doi: 10.1074/jbc.M305322200

29. Vasilyeva N. A., Loktyushov E. V., Bychkov M. L., Shenkarev Z. O., Lyukmanova E. N. Three-finger proteins from the Ly6/uPAR Family: Functional diversity within one structural motif. Biochemistry, 2017, vol. 82, iss. 13, pp. 1702–1715. doi: 10.1134/S0006297917130090

30. Wallach V., Wüster W., Broadley D. G. In praise of subgenera: Taxonomic status of cobras of the genus Naja laurenti (Serpentes: Elapidae). Zootaxa, 2009, vol. 2236, pp. 26–36.

31. Wallach V., Williams K. L., Boundy J. Snakes of the World. A Catalogue of Living and Extinct Species. Boca Raton, CRC Press, 2014. 1227 p.

32. Wüster W., Chirio L., Trape J.-F., Ineich I., Jackson K., Greenbaum E., Barron C., Kusamba C., Nagy Z. T., Storey R., Hall C., Wüster C. E., Barlow A., Broadley D. G. Integration of nuclear and mitochondrial gene sequences and morphology reveals unexpected diversity in the forest cobra (Naja melanoleuca) species complex in Central and West Africa (Serpentes: Elapidae). Zootaxa, 2018, vol. 4455, pp. 68–98. doi: 10.11646/zootaxa.4455.1.3

33. Wüster W., Crookes S., Ineich I., Mané Y., Pook C. E., Trape J.-F., Broadley D. G. The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Molecular Phylogenetics and Evolution, 2007, vol. 45, iss. 2, pp. 437–453. doi: 10.1016/j.ympev.2007.07.021

34. Wüster W. Taxonomic changes and toxinology: Systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon, 1996, vol. 34, iss. 4, pp. 399–406. doi: 10.1016/0041-0101(95)00139-5

35. Young B. A., Dunlap K., Koenig K., Singer M. The buccal buckle: The functional morphology of venom spitting in cobras. Journal of Experimental Biology, 2004, vol. 207, no. 20, pp. 3483–3494. doi: 10.1242/jeb.01170

36. Young B. A., Lee C. E., Daley K. M. Do snakes meter venom? BioScience, 2002, vol. 52, iss. 12, pp. 1121–1126. doi: 10.1641/0006-3568(2002)052[1121:DSMV]2.0.CO;2


Review

For citations:


Gelashvili D.B., Romanova E.B. Genus Naja (Elapidae, Serpentes) (True cobras): Current systematics, toxinological characteristics, and ecological groups. Povolzhskiy Journal of Ecology. 2025;(3):268-285. (In Russ.) https://doi.org/10.35885/1684-7318-2025-3-268-285

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)