Preview

Povolzhskiy Journal of Ecology

Advanced search

Potential of utilizing aged bark-and-wood waste through mycological degradation as a biotechnological process

https://doi.org/10.35885/1684-7318-2024-4-500-508

Abstract

Our composition analysis of bark-and-wood waste from a warehouse in the Syktyvkar city revealed a high nutrient content, no toxicity, and the potential for using xylotrophic basidiomycetes for solid state fermentation. Three strains of xylotrophic basidiomycetes (Trametes hirsuta, Fomitopsis pinicola, and Laetiporus sulphureus) were evaluated for their growth rate, growth index, yield of hardly hydrolysable polysaccharides, and cellulase yield when cultivated on the bark-wood waste. The results showed that T. hirsuta exhibited the highest growth rate (4.95– 6.2 mm/day), growth factor (60–77), and the maximum yield of hardly hydrolysable polysaccharides (30.7%) in 30 days. Furthermore, the maximum cellulase yield was 1330 unit/g. 

About the Authors

Vladislav V. Martynov
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Laboratory of Biochemistry and Biotechnology 

28 Kommunisticheskaya St., Syktyvkar 167982



Tatiana N. Shchemelinina
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation

28 Kommunisticheskaya St., Syktyvkar 167982



Elena M. Anchugova
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation

28 Kommunisticheskaya St., Syktyvkar 167982



References

1. Bhati N., Shreya, Sharma A. K. Cost‐effective cellulase production, improvement strategies, and future challenges. Journal of Food Process Engineering, 2021, vol. 44, iss. 2, article no. e13623. https://doi.org/10.1111/jfpe.13623

2. Bonanomi G., Ippolito F., Senatore M., Cesarano G., Incerti G., Saracino A., Lanzotti V., Scala F., Mazzoleni S. Water extracts of charred litter cause opposite effects on growth of plants and fungi. Soil Biology and Biochemistry, 2016, vol. 92, pp. 133–141. https://doi.org/10.1016/j.soilbio.2015.10.003

3. Hu Y., Priya A., Chen C., Liang C., Wang W., Wang Q., Lin C. S. K., Qi W. Recent advances in substrate-enzyme interactions facilitating efficient biodegradation of lignocellulosic biomass: A review. International Biodeterioration & Biodegradation, 2023, vol. 180, article no. 105594. https://doi.org/10.1016/j.ibiod.2023.105594

4. Ma J., Li Q., Wu Y., Yue H., Zhang Y., Zhang J., Shi M. Elucidation of ligninolysis mechanism of a newly isolated white-rot basidiomycete Trametes hirsuta X-13. Biotechnology for Biofuels and Bioproducts, 2021, vol. 14, article no. 89. https://doi.org/10.1186/s13068-021-02040-7

5. Mali T., Laine K., Hamberg L., Lundell T. Metabolic activities and ultrastructure imaging at late-stage of wood decomposition in interactive brown rot – white rot fungal combinations. Fungal Ecology, 2023, vol. 61, article no. 101199. https://doi.org/10.1016/j.funeco.2022.101199

6. Nitsos C. K., Lazaridis P. A., Mach-Aigner A., Matis K. A., Triantafyllidis K. S. Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem, 2019, vol. 12, iss. 6, pp. 1179– 1195. https://doi.org/10.1002/cssc.201802597

7. Shao Y., Lin A. H.-M. Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chemistry, 2018, vol. 240, pp. 898– 903. https://doi.org/10.1016/j.foodchem.2017.07.083

8. Shirkavand E., Baroutian S., Gapes D. J., Young B. R. Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Conversion and Management, 2017, vol. 142, pp. 13 – 19. https://doi.org/10.1016/j.enconman.2017.03.021

9. Suryadi H., Judono J. J., Putri M. R., Eclessia A. D., Ulhaq J. M., Agustina D. N., Sumiati T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon, 2022, vol. 8, iss. 2, article no. e08865. https://doi.org/10.1016/j.heliyon.2022.e08865

10. Tirado-González D. N., Jáuregui-Rincón J., Tirado-Estrada G. G., Martínez-Hernández P. A., Guevara-Lara F., Miranda-Romero L. A. Production of cellulases and xylanases by white-rot fungi cultured in corn stover media for ruminant feed applications. Animal Feed Science and Technology, 2016, vol. 221, part A, pp. 147–156. https://doi.org/10.1016/j.anifeedsci.2016.09.001

11. Volobuev S., Shakhova N. Towards the discovery of active lignocellulolytic enzyme producers: A screening study of xylotrophic macrofungi from the Central Russian upland. Iranian Journal of Science and Technology, 2022, vol. 46, pp. 91 – 100. https://doi.org/10.1007/s40995-021-01245-7

12. Zhang Z., Shah A. M., Mohamed H., Tsiklauri N., Song Y. Isolation and screening of microorganisms for the effective pretreatment of lignocellulosic agricultural wastes. BioMed Research International, 2021, article no. 5514745. https://doi.org/10.1155/2021/5514745


Review

For citations:


Martynov V.V., Shchemelinina T.N., Anchugova E.M. Potential of utilizing aged bark-and-wood waste through mycological degradation as a biotechnological process. Povolzhskiy Journal of Ecology. 2024;(4):500 – 508. (In Russ.) https://doi.org/10.35885/1684-7318-2024-4-500-508

Views: 1191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)