Preview

Povolzhskiy Journal of Ecology

Advanced search

Toxins of the venom of tarantulas (Theraphosidae, Arachnida) in interspecies interactions

https://doi.org/10.35885/1684-7318-2024-4-410-430

Abstract

Spiders are the most important entomophages in ecosystems. They are the most numerous poisonous animals on the planet, indispensable regulators of populations’ numbers by killing mainly insects and other small arthropods. Spiders are an integral part of the food chain; they produce venom serving to immobilize the prey. Spider venoms are a “natural combinatorial library” of biologically active substances, with varying effectiveness and specificity. A feature of the biological effect of spider’s venom is a unique combination of the low toxicity of the whole venom, for both animals and humans, with high selectivity of the interaction of the neurotoxins, which are part of the venom, with the molecular structures of ion channels and synaptic receptors of the nervous system. The present review introduces the reader to new fundamental facts, ideas and perspective of the practical application of spider’s venoms in biomedical research and drug design. The current state of research on a unique set of polypeptide toxins which serve as chemical factors (allomons) of the interspecific (allelochemical) interactions of spiders of the family Thetaphosidae is considered. Modern information on the structure of spiders’ venom toxins is analyzed using the UniProt database. The latest bioecological and toxicological characteristics of tarantulas are presented. The chemical nature and mechanism of action of some unique toxins selectively acting on key processes in the nervous system are considered. The toxins act upon synaptic transmission and the functioning ion channels, which allow spiders not only to interact with various molecular targets of the prey or predator, but also to implement various life strategies, gaining an evolutionary advantage. 

About the Authors

David B. Gelashvili
Lobachevsky State University of Nizhni Novgorod
Russian Federation

23 Gagarin Avenue, Nizhni Novgorod 603950



Elena B. Romanova
Lobachevsky State University of Nizhni Novgorod
Russian Federation

23 Gagarin Avenue, Nizhni Novgorod 603950



References

1. Agwa A. J., Lawrence N., Deplazes E., Cheneval O., Chen R. M., Craik D. J., Schroeder C. I., Henriques S.T. Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNav1.7. Biochimica et Biophysica Acta, 2017, vol. 1859, no. 5, pp. 835–844. https://doi.org/10.1016/j.bbamem.2017.01.020

2. Ardisson-Araújo D. M. P., Morgado F. D. S., Schwartz E. F., Corzo G., Ribeiro B. M. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection. PLoS ONE, 2013, vol. 12, no. 8, article no. e84404. https://doi.org/10.1371/journal.pone.0084404

3. Bowman C. L., Gottlieb P. A., Suchyna T. M., Murphy Y. K., Sachs F. Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: History, properties, mechanisms and pharmacology. Toxicon, 2007, vol. 49, iss. 2, pp. 249–270. https://doi.org/10.1016/j.toxicon.2006.09.030

4. Chan T. K., Geren C. R., Howell D. E., Odell G. V. Adenosine triphosphate in tarantula spider venoms and its synergistic effect with the venom toxin. Toxicon, 1975, vol. 13, iss. 1, pp. 61–66.

5. Chen J., Deng M., He Q., Meng E., Jiang L., Liao Z., Rong M., Liang S. Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao. Cellular and Molecular Life Sciences, 2008, vol. 65, iss. 15, pp. 2431–2444. https://doi.org/10.1007/s00018-008-8135-x

6. Cheng T.-C., Long R.-W., Wu Y.-Q., Guo Y.-B., Liu D.-L., Peng L., Li D.-Q., Yang D.-W., Xu X., Liu F.-X., Хia Q.-Y. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis. Insect Science, 2016, vol. 23, iss. 3, pp. 487–499. https://doi.org/10.1111/1744-7917.12305

7. Cromer B. A., McIntyre P. Painful toxins acting at TRPV1. Toxicon, 2008, vol. 51, iss. 2, pp. 163–173.

8. Dawson R. J., Benz J., Stohler P., Tetaz T., Joseph C., Huber S., Schmid G., Hügin D., Pflimlin P., Trube G., Rudolph M.G., Hennig M., Ruf A. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nature Communications, 2012, no. 3, article no. 936. https://doi.org/10.1038/ncomms1917

9. Deng M., Luo X., Xiao Y., Sun Z., Jiang L., Liu Z., Zeng X., Chen H., Tang J., Zeng W., Liang S. Huwentoxin-XVI, an analgesic, highly reversible mammalian N-type calcium channel antagonist from Chinese tarantula Ornithoctonus huwena. Neuropharmacology, 2014, vol. 79, pp. 657–667. https://doi.org/10.1016/j.neuropharm.2014.01.017

10. Escoubas P., Bernard C., Lambeau G., Lazdunski M., Darbon H. Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Science, 2003, vol. 12, iss. 7, pp. 1332–1343. https://doi.org/10.1110/ps.0307003

11. Escoubas P., De Weille J. R., Lecoq A., Diochot S., Waldmann R., Champigny G., Moinier D., Ménez A., Lazdunski M. Isolation of a tarantula toxin specific for a class of proton-gated Na+channels. Journal of Biological Chemistry, 2000, vol. 275, iss. 33, pp. 25116–25121. https://doi.org/10.1074/jbc.M003643200

12. Escoubas P., Diochot S., Celerier M.-L., Nakajima T., Lazdunski M. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Molecular Pharmacology, 2002, vol. 62, iss. 1, pp. 48–57. https://doi.org/10.1124/mol.62.1.48

13. Escoubas P., Rash L. Tarantulas: Eight-legged pharmacists and combinatorial chemists. Toxicon, 2004, vol. 43, iss. 5, pp. 555–574. https://doi.org/10.1016/j.toxicon.2004.02.007

14. Fletcher J. I., Wang X., Connor M., Christie M. J., King G. F., Nicholson G. M. Spider toxins: A new group of potassium channel modulators. Perspectives in Drug Discovery and Design, 1999, vol. 15, iss. 1, pp. 61–69.

15. Gelashvili D. B., Krylov V. N., Romanova E. B. Zootoxinology: Bioecological and Biomedical Aspects. Nizhnij Novgorod, Lobachevsky State University of Nizhni Novgorod Publ., 2015. 770 p. (in Russian).

16. Gladkikh I. N., Sintsova O. V., Leychenko E. V., Kozlov S. A. TRPV1 ion channel: Structural features, activity modulators, and therapeutic potential. Biochemistry, 2021, vol. 86, supll. 1, pp. 50–70. https://doi.org/10.1134/S0006297921140054

17. Herrington J. Gating modifier peptides as probes of pancreatic β-cell physiology. Toxicon, 2007, vol. 49, iss. 2, pp. 231–238. https://doi.org/10.1016/j.toxicon.2006.09.012

18. Herzig V. Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon, 2019, vol. 158, pp. 33–37. https://doi.org/10.1016/j.toxicon.2018.11.312

19. Hesselberg T., Galvez D. Spider ecology and behaviour–spiders as model organisms. Insects, 2023, vol. 14, no. 4, article no. 330. https://doi.org/10.3390/insects14040330

20. Khan S. A., Zafar Y., Briddon R. W., Malik K. A., Mukhtar Z. Spider venom toxin protects plants from insect attack. Transgenic Research, 2006, vol. 15, iss. 3, pp. 349–357. https://doi.org/10.1007/s11248-006-0007-2

21. King G. F., Gentz M. C., Escoubas P., Graham M. N. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon, 2008, vol. 52, iss. 2, pp. 264–276. https://doi.org/10.1016/j.toxicon.2008.05.020

22. Kuhn-Nentwig L., Stocklin R., Nentwig W. Venom composition and strategies in spiders: Is everything possible? Advances in Insect Physiology, 2011, vol. 40, pp. 1–86. https://doi.org/10.1016/B978-0-12-387668-3.00001-5

23. Lampe R. A., Defeo P. A., Davison M. D., Young J., Herman J. L., Spreen R. C., Horn M. B., Mangano T. J., Keith R. A. Isolation and pharmacological characterization of omega-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses. Molecular Pharmacology, 1993, vol. 44, iss. 2, pp. 451–460.

24. Lee S., Milescu M., Jung H. H., Lee J. Y., Bae C. H., Lee C. W., Kim H. H., Swartz K. J., Kim J. I. Solution structure of GxTX-1E, a high-affinity tarantula toxin interacting with voltage sensors in Kv2.1 potassium channels. Biochemistry, 2010, vol. 49, iss. 25, pp. 5134–5142. https://doi.org/10.1021/bi100246u

25. Li D., Xiao Y., Hu W., Xie J., Bosmans F., Tytgat J., Liang S. Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Letters, 2003, vol. 555, iss.3, pp. 616–622. https://doi.org/10.1016/s00145793(03)01303-6

26. Liang S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon, 2004, vol. 43, iss. 5, pp. 575–585. https://doi.org/10.1016/j.toxicon.2004.02.005

27. Liao Z., Cao J., Li S., Yan X., Hu W., He Q., Chen J., Tang J., Xie J., Liang S. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics, 2007, vol. 7, iss. 11, pp. 1892–1907. https://doi.org/10.1002/pmic.200600785

28. Liu Z., Cai T., Zhu Q., Deng M., Li J., Zhou X., Zhang F., Li D., Liu Y., Hu W., Liang S. Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the chinese bird spider Ornithoctonus hainana. Journal of Biological Chemistry, 2013, vol. 288, iss. 28, pp. 20392–20403. https://doi.org/10.1074/jbc.m112.426627

29. Lüddecke T., Herzig V., von Reumont B. M., Vilcinskas A. The biology and evolution of spider venoms. Biological Reviews, 2022, vol. 97, pp. 163–178. https://doi.org/10.1111/brv.12793

30. Middleton R. E., Warren V. A., Kraus R. L., Hwang J. C., Liu C. J., Dai G., Brochu R. M., Kohler M. G., Gao Y.-D., Garsky V. M., Bogusky M. J., Mehl J. T., Cohen C. J., Smith M. M. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry, 2002, vol. 41, iss. 50, pp. 14734–14747. https://doi.org/10.1021/bi026546a

31. Odell G. V., Ownby C. L., Christian C. D., Hudiburg S. A., Herrero V., Swartz P. D., Hooper K. P. A review of research on tarantula colony maintenance, venom collection, composition and toxicity. Toxicon, 1987, vol. 25, iss. 2, pp. 151. https://doi.org/10.1016/0041-0101(87)90219-4 Osteen J. D., Herzig V., Gilchrist J., Emrick J. J., Zhang C., Wang X., Castro J., GarciaCaraballo S., Grundy L., Rychkov G. Y. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, vol. 534, no. 7680, pp. 494–499. https://doi.org/10.1038/nature17976

32. Ostrow K. L., Mammoser A., Suchyna T., Sachs F., Oswald R., Kubo S., Chino N., Gottlieb P. A. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon, 2003, vol. 42, iss. 3, pp. 263–274. https://doi.org/10.1016/s00410101(03)00141-7

33. Pekar S., Coddington J. A., Blackledge T. A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution, 2011, vol. 66, iss. 3, pp. 776–778. https://doi.org/10.1111/j.1558-5646.2011.01471.x

34. Pérez-Miles F. Introduction to the Theraphosidae. In: Pérez-Miles F., ed. New World Tarantulas: Taxonomy, Biogeography and Evolutionary Biology of Theraphosidae. Cham, Springer Nature, 2020, pp. 1–24. https://doi.org/10.1007/978-3-030-48644-0_1

35. Pineda S. S., Chin Y. K. Y., Undheim E. A. B., King G. F. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 21, pp. 11399–11408. https://doi.org/10.1073/pnas.1914536117

36. Piser T. M., Lampe R. A., Keith R. A., Thayer S. A. Complete and reversible block by ωgrammotoxin SIA of glutamatergic synaptic transmission between cultured rat hippocampal neurons. Neuroscience Letters, 1995, vol. 201, iss. 2, pp. 135–138. https://doi.org/10.1016/03043940(95)12169-2

37. Platnick N. I., ed. Spiders of the World: A Natural History. Princeton, Princeton University Press, 2020. 257 p. https://doi.org/10.1525/9780691204987

38. Priest B. T., Blumenthal K. M., Smith J. J., Warren V. A., Smith M. M. ProTx-I and ProTxII: Gating modifiers of voltage-gated sodium channels. Toxicon, 2007, vol. 49, iss. 2, pp. 194–201. https://doi.org/10.1016/j.toxicon.2006.09.014

39. Richards K. L., Milligan C., Richardson R. J., Jancovski N., Grunnet M., Jacobson L. H., Undheim E. A. B., Mobli M. Selective Nav1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proceedings of the National Academy of Sciences, 2018, vol. 115, no. 34, pp. 8077–8085. https://doi.org/10.1073/pnas.1804764115

40. Saez N. J., Mobli M., Bieri M., Chassagnon I. R., Malde A. K., Gamsjaeger R., Mark A. E., Gooley P. R., Rash L. D., King G. F. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Molecular Pharmacology, 2011, vol. 80, iss. 5, pp. 796–808. https://doi.org/10.1073/pnas.180476411510.1124/mol.111.072207

41. Saez N. J., Senff S., Jensen J. E., Er S. Y., Herzig V., Rash L. D., King G. F. Spider-venom peptides as therapeutics. Toxins, 2010, vol. 2, iss. 12, pp. 2851–2871. https://doi.org/10.3390/toxins2122851

42. Schanbacher F. L., Lee C. K., Wilson I. B., Howell D. E., Odell G. V. Purification and characterization of tarantula, Dugesiella hentzi (Girard) venom hyaluronidase. Comparative Biochemistry &Physiology, 1973, vol. 44, iss. 2, pp. 389–396.

43. Siemens J., Zhou S., Piskorowski R., Nikai T., Lumpkin E. A., Basbaum A. I., King D., Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature, 2006, vol. 444, pp. 208–212.

44. Suchyna T. M., Johnson J. H., Hamer K., Joseph F., Leykam D. A., Gage H. F., Clive C., Baumgarten M., Sachs F. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. Journal of General Physiology, 2000, vol. 115, iss. 5, pp. 583–598. https://doi.org/10.1085/jgp.115.5.583

45. Swartz K. J., MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron, 1997, vol. 18, iss. 4, pp. 665–673. https://doi.org/10.1016/s0896-6273(00)80306-2

46. Takahashi H., Kim J. I., Min H. J., Sato K., Swartz K. J., Shimada I. Solution structure of hanatoxin1, a gating modifier of voltage-dependent K+ channels: Common surface features of gating modifier toxins. Journal of Molecular Biology, 2000, vol. 297, iss. 3, pp. 771–780. https://doi.org/10.1006/jmbi.2000.3609

47. Takeuchi K., Park E. J., Lee C. W., Takeuchi K., Park E. J., Lee C. W., Kim J. I., Takahashi H., Swartz K. J., Shimada I. Solution structure of ω-grammotoxin SIA, a gating modifier of P/Q and N-type Ca2+ channel. Journal of Molecular Biology, 2002, vol. 321, iss. 3, pp. 517–526. https://doi.org/10.1016/s0022-2836(02)00595-8

48. Tilley D. C., Angueyra J. M., Eum K. S., Kim H., Chao L.H., Peng A.W., Sack J.T. The tarantula toxin GxTx detains K+ channel gating charges in their resting conformation. Journal of General Physiology, 2019, vol. 151, iss. 3, pp. 292–315. https://doi.org/10.1085/jgp.201812213

49. Vassilevski A. A., Kozlov S. A., Grishin E. V. Molecular diversity of spider venom. Biochemistry, 2009, vol. 74, no. 13, pp. 1505–1534. https://doi.org/10.1134/S0006297909130069

50. Whittaker R. H., Feeny P. P. Allelochemics: Chemical interactions between species. Science, 1971, vol. 17, no. 3973, pp. 757–770. https://doi.org/10.1126/science.171.3973.757

51. Wigger E., Kuhn-Nentwig L., Nentwig W. The venom optimisation hypothesis: A spider injects large venom quantities only into difficult prey types. Toxicon, 2002, vol. 40, iss. 6, pp. 749–752. https://doi.org/10.1016/s0041-0101(01)00277-x

52. World Spider Catalog. Version 25.0. Bern, Natural History Museum, 2024. Available at: http://wsc.nmbe.ch/ (accessed January 21, 2024). https://doi.org/10.24436/2

53. Wright Z. V. F., McCarthy S., Dickman R., Reyes F. E., Sanchez-Martinez S., Cryar A., Kilford I., Hall A. The role of disulfide bond replacements in analogues of the tarantula toxin ProTxII and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7. J. Journal of the American Chemical Society, 2017, vol. 139, no. 37, pp. 13063–13075. https://doi.org/10.1021/jacs.7b06506

54. Xiao Y., Tang J., Hu W., Xie J., Maertens C., Tytgat J., Liang S. Jingzhaotoxin-I, a novel spider neurotoxin preferentially inhibiting cardiac sodium channel inactivation. Journal of Biological Chemistry, 2004, vol. 280, iss. 13, pp. 12069–12076. https://doi.org/10.1074/jbc.m411651200

55. Yuan C. H., He Q. Y., Peng K., Diao J.-B., Jiang L.-P., Tang X., Liang S.-P. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE, 2008, vol. 3, no. 10, article no. e3414. https://doi.org/10.1371/journal.pone.0003414


Review

For citations:


Gelashvili D.B., Romanova E.B. Toxins of the venom of tarantulas (Theraphosidae, Arachnida) in interspecies interactions. Povolzhskiy Journal of Ecology. 2024;(4):410 – 430. (In Russ.) https://doi.org/10.35885/1684-7318-2024-4-410-430

Views: 1219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)