Токсины яда пауков-птицеедов (Theraphosidae, Arachnida) в межвидовых взаимодействиях
https://doi.org/10.35885/1684-7318-2024-4-410-430
Аннотация
Пауки, как важнейшие энтомофаги экосистем, являются самыми многочисленными ядовитыми животными на планете и незаменимыми регуляторами численности популяций, истребляя, главным образом, насекомых и других мелких членистоногих. Пауки – неотъемлемая часть трофической цепи, они производят яд, который служит для обездвиживания добычи. Яды пауков являются «природной комбинаторной библиотекой» биологически активных веществ, с различной эффективностью и специфичностью. Особенностью биологического действия яда пауков является уникальное сочетание относительно низкой общей токсичности цельного яда, как для животных, так и для человека, с высокой селективностью взаимодействия нейротоксинов, входящих в состав яда, с молекулярными структурами ионных каналов и синаптических рецепторов нервной системы. Обзор знакомит с новыми фундаментальными фактами и идеями в активно развивающейся области изучения яда пауков-птицеедов и перспектив их практического применения в биомедицинских исследованиях для рационального конструирования лекарств (drug design). Рассмотрено современное состояние исследований уникального набора полипептидных токсинов, служащих химическими факторами (алломонами) межвидовых (аллелохимических) взаимодействий пауков-птицеедов семейства Thetaphosidae. Современная информация о структуре токсинов яда пауков-птицеедов анализируется по базе данных UniProt. Приведена новейшая биоэкологическая и токсинологическая характеристика пауков-птицеедов. Рассмотрена химическая природа и механизм действия уникальных токсинов, селективно действующих на ключевые процессы в нервной системе: синаптическую передачу и функционирование ионных каналов, что позволяет паукам-птицеедам не только взаимодействовать с различными молекулярными мишенями жертвы или хищника, но и реализовывать различные жизненные стратегии, приобретая эволюционное преимущество.
Об авторах
Д. Б. ГелашвилиРоссия
Гелашвили Давид Бежанович, Институт биологии и биомедицины
603950, г. Нижний Новгород, просп. Гагарина, д. 23
Е. Б. Романова
Россия
Романова Елена Борисовна
603950, г. Нижний Новгород, просп. Гагарина, д. 23
Список литературы
1. Agwa A. J., Lawrence N., Deplazes E., Cheneval O., Chen R. M., Craik D. J., Schroeder C. I., Henriques S.T. Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNav1.7. Biochimica et Biophysica Acta, 2017, vol. 1859, no. 5, pp. 835–844. https://doi.org/10.1016/j.bbamem.2017.01.020
2. Ardisson-Araújo D. M. P., Morgado F. D. S., Schwartz E. F., Corzo G., Ribeiro B. M. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection. PLoS ONE, 2013, vol. 12, no. 8, article no. e84404. https://doi.org/10.1371/journal.pone.0084404
3. Bowman C. L., Gottlieb P. A., Suchyna T. M., Murphy Y. K., Sachs F. Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: History, properties, mechanisms and pharmacology. Toxicon, 2007, vol. 49, iss. 2, pp. 249–270. https://doi.org/10.1016/j.toxicon.2006.09.030
4. Chan T. K., Geren C. R., Howell D. E., Odell G. V. Adenosine triphosphate in tarantula spider venoms and its synergistic effect with the venom toxin. Toxicon, 1975, vol. 13, iss. 1, pp. 61–66.
5. Chen J., Deng M., He Q., Meng E., Jiang L., Liao Z., Rong M., Liang S. Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao. Cellular and Molecular Life Sciences, 2008, vol. 65, iss. 15, pp. 2431–2444. https://doi.org/10.1007/s00018-008-8135-x
6. Cheng T.-C., Long R.-W., Wu Y.-Q., Guo Y.-B., Liu D.-L., Peng L., Li D.-Q., Yang D.-W., Xu X., Liu F.-X., Хia Q.-Y. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis. Insect Science, 2016, vol. 23, iss. 3, pp. 487–499. https://doi.org/10.1111/1744-7917.12305
7. Cromer B. A., McIntyre P. Painful toxins acting at TRPV1. Toxicon, 2008, vol. 51, iss. 2, pp. 163–173.
8. Dawson R. J., Benz J., Stohler P., Tetaz T., Joseph C., Huber S., Schmid G., Hügin D., Pflimlin P., Trube G., Rudolph M.G., Hennig M., Ruf A. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nature Communications, 2012, no. 3, article no. 936. https://doi.org/10.1038/ncomms1917
9. Deng M., Luo X., Xiao Y., Sun Z., Jiang L., Liu Z., Zeng X., Chen H., Tang J., Zeng W., Liang S. Huwentoxin-XVI, an analgesic, highly reversible mammalian N-type calcium channel antagonist from Chinese tarantula Ornithoctonus huwena. Neuropharmacology, 2014, vol. 79, pp. 657–667. https://doi.org/10.1016/j.neuropharm.2014.01.017
10. Escoubas P., Bernard C., Lambeau G., Lazdunski M., Darbon H. Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Science, 2003, vol. 12, iss. 7, pp. 1332–1343. https://doi.org/10.1110/ps.0307003
11. Escoubas P., De Weille J. R., Lecoq A., Diochot S., Waldmann R., Champigny G., Moinier D., Ménez A., Lazdunski M. Isolation of a tarantula toxin specific for a class of proton-gated Na+channels. Journal of Biological Chemistry, 2000, vol. 275, iss. 33, pp. 25116–25121. https://doi.org/10.1074/jbc.M003643200
12. Escoubas P., Diochot S., Celerier M.-L., Nakajima T., Lazdunski M. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Molecular Pharmacology, 2002, vol. 62, iss. 1, pp. 48–57. https://doi.org/10.1124/mol.62.1.48
13. Escoubas P., Rash L. Tarantulas: Eight-legged pharmacists and combinatorial chemists. Toxicon, 2004, vol. 43, iss. 5, pp. 555–574. https://doi.org/10.1016/j.toxicon.2004.02.007
14. Fletcher J. I., Wang X., Connor M., Christie M. J., King G. F., Nicholson G. M. Spider toxins: A new group of potassium channel modulators. Perspectives in Drug Discovery and Design, 1999, vol. 15, iss. 1, pp. 61–69.
15. Gelashvili D. B., Krylov V. N., Romanova E. B. Zootoxinology: Bioecological and Biomedical Aspects. Nizhnij Novgorod, Lobachevsky State University of Nizhni Novgorod Publ., 2015. 770 p. (in Russian).
16. Gladkikh I. N., Sintsova O. V., Leychenko E. V., Kozlov S. A. TRPV1 ion channel: Structural features, activity modulators, and therapeutic potential. Biochemistry, 2021, vol. 86, supll. 1, pp. 50–70. https://doi.org/10.1134/S0006297921140054
17. Herrington J. Gating modifier peptides as probes of pancreatic β-cell physiology. Toxicon, 2007, vol. 49, iss. 2, pp. 231–238. https://doi.org/10.1016/j.toxicon.2006.09.012
18. Herzig V. Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon, 2019, vol. 158, pp. 33–37. https://doi.org/10.1016/j.toxicon.2018.11.312
19. Hesselberg T., Galvez D. Spider ecology and behaviour–spiders as model organisms. Insects, 2023, vol. 14, no. 4, article no. 330. https://doi.org/10.3390/insects14040330
20. Khan S. A., Zafar Y., Briddon R. W., Malik K. A., Mukhtar Z. Spider venom toxin protects plants from insect attack. Transgenic Research, 2006, vol. 15, iss. 3, pp. 349–357. https://doi.org/10.1007/s11248-006-0007-2
21. King G. F., Gentz M. C., Escoubas P., Graham M. N. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon, 2008, vol. 52, iss. 2, pp. 264–276. https://doi.org/10.1016/j.toxicon.2008.05.020
22. Kuhn-Nentwig L., Stocklin R., Nentwig W. Venom composition and strategies in spiders: Is everything possible? Advances in Insect Physiology, 2011, vol. 40, pp. 1–86. https://doi.org/10.1016/B978-0-12-387668-3.00001-5
23. Lampe R. A., Defeo P. A., Davison M. D., Young J., Herman J. L., Spreen R. C., Horn M. B., Mangano T. J., Keith R. A. Isolation and pharmacological characterization of omega-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses. Molecular Pharmacology, 1993, vol. 44, iss. 2, pp. 451–460.
24. Lee S., Milescu M., Jung H. H., Lee J. Y., Bae C. H., Lee C. W., Kim H. H., Swartz K. J., Kim J. I. Solution structure of GxTX-1E, a high-affinity tarantula toxin interacting with voltage sensors in Kv2.1 potassium channels. Biochemistry, 2010, vol. 49, iss. 25, pp. 5134–5142. https://doi.org/10.1021/bi100246u
25. Li D., Xiao Y., Hu W., Xie J., Bosmans F., Tytgat J., Liang S. Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Letters, 2003, vol. 555, iss.3, pp. 616–622. https://doi.org/10.1016/s00145793(03)01303-6
26. Liang S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon, 2004, vol. 43, iss. 5, pp. 575–585. https://doi.org/10.1016/j.toxicon.2004.02.005
27. Liao Z., Cao J., Li S., Yan X., Hu W., He Q., Chen J., Tang J., Xie J., Liang S. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics, 2007, vol. 7, iss. 11, pp. 1892–1907. https://doi.org/10.1002/pmic.200600785
28. Liu Z., Cai T., Zhu Q., Deng M., Li J., Zhou X., Zhang F., Li D., Liu Y., Hu W., Liang S. Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the chinese bird spider Ornithoctonus hainana. Journal of Biological Chemistry, 2013, vol. 288, iss. 28, pp. 20392–20403. https://doi.org/10.1074/jbc.m112.426627
29. Lüddecke T., Herzig V., von Reumont B. M., Vilcinskas A. The biology and evolution of spider venoms. Biological Reviews, 2022, vol. 97, pp. 163–178. https://doi.org/10.1111/brv.12793
30. Middleton R. E., Warren V. A., Kraus R. L., Hwang J. C., Liu C. J., Dai G., Brochu R. M., Kohler M. G., Gao Y.-D., Garsky V. M., Bogusky M. J., Mehl J. T., Cohen C. J., Smith M. M. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry, 2002, vol. 41, iss. 50, pp. 14734–14747. https://doi.org/10.1021/bi026546a
31. Odell G. V., Ownby C. L., Christian C. D., Hudiburg S. A., Herrero V., Swartz P. D., Hooper K. P. A review of research on tarantula colony maintenance, venom collection, composition and toxicity. Toxicon, 1987, vol. 25, iss. 2, pp. 151. https://doi.org/10.1016/0041-0101(87)90219-4 Osteen J. D., Herzig V., Gilchrist J., Emrick J. J., Zhang C., Wang X., Castro J., GarciaCaraballo S., Grundy L., Rychkov G. Y. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, vol. 534, no. 7680, pp. 494–499. https://doi.org/10.1038/nature17976
32. Ostrow K. L., Mammoser A., Suchyna T., Sachs F., Oswald R., Kubo S., Chino N., Gottlieb P. A. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon, 2003, vol. 42, iss. 3, pp. 263–274. https://doi.org/10.1016/s00410101(03)00141-7
33. Pekar S., Coddington J. A., Blackledge T. A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution, 2011, vol. 66, iss. 3, pp. 776–778. https://doi.org/10.1111/j.1558-5646.2011.01471.x
34. Pérez-Miles F. Introduction to the Theraphosidae. In: Pérez-Miles F., ed. New World Tarantulas: Taxonomy, Biogeography and Evolutionary Biology of Theraphosidae. Cham, Springer Nature, 2020, pp. 1–24. https://doi.org/10.1007/978-3-030-48644-0_1
35. Pineda S. S., Chin Y. K. Y., Undheim E. A. B., King G. F. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 21, pp. 11399–11408. https://doi.org/10.1073/pnas.1914536117
36. Piser T. M., Lampe R. A., Keith R. A., Thayer S. A. Complete and reversible block by ωgrammotoxin SIA of glutamatergic synaptic transmission between cultured rat hippocampal neurons. Neuroscience Letters, 1995, vol. 201, iss. 2, pp. 135–138. https://doi.org/10.1016/03043940(95)12169-2
37. Platnick N. I., ed. Spiders of the World: A Natural History. Princeton, Princeton University Press, 2020. 257 p. https://doi.org/10.1525/9780691204987
38. Priest B. T., Blumenthal K. M., Smith J. J., Warren V. A., Smith M. M. ProTx-I and ProTxII: Gating modifiers of voltage-gated sodium channels. Toxicon, 2007, vol. 49, iss. 2, pp. 194–201. https://doi.org/10.1016/j.toxicon.2006.09.014
39. Richards K. L., Milligan C., Richardson R. J., Jancovski N., Grunnet M., Jacobson L. H., Undheim E. A. B., Mobli M. Selective Nav1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proceedings of the National Academy of Sciences, 2018, vol. 115, no. 34, pp. 8077–8085. https://doi.org/10.1073/pnas.1804764115
40. Saez N. J., Mobli M., Bieri M., Chassagnon I. R., Malde A. K., Gamsjaeger R., Mark A. E., Gooley P. R., Rash L. D., King G. F. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Molecular Pharmacology, 2011, vol. 80, iss. 5, pp. 796–808. https://doi.org/10.1073/pnas.180476411510.1124/mol.111.072207
41. Saez N. J., Senff S., Jensen J. E., Er S. Y., Herzig V., Rash L. D., King G. F. Spider-venom peptides as therapeutics. Toxins, 2010, vol. 2, iss. 12, pp. 2851–2871. https://doi.org/10.3390/toxins2122851
42. Schanbacher F. L., Lee C. K., Wilson I. B., Howell D. E., Odell G. V. Purification and characterization of tarantula, Dugesiella hentzi (Girard) venom hyaluronidase. Comparative Biochemistry &Physiology, 1973, vol. 44, iss. 2, pp. 389–396.
43. Siemens J., Zhou S., Piskorowski R., Nikai T., Lumpkin E. A., Basbaum A. I., King D., Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature, 2006, vol. 444, pp. 208–212.
44. Suchyna T. M., Johnson J. H., Hamer K., Joseph F., Leykam D. A., Gage H. F., Clive C., Baumgarten M., Sachs F. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. Journal of General Physiology, 2000, vol. 115, iss. 5, pp. 583–598. https://doi.org/10.1085/jgp.115.5.583
45. Swartz K. J., MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron, 1997, vol. 18, iss. 4, pp. 665–673. https://doi.org/10.1016/s0896-6273(00)80306-2
46. Takahashi H., Kim J. I., Min H. J., Sato K., Swartz K. J., Shimada I. Solution structure of hanatoxin1, a gating modifier of voltage-dependent K+ channels: Common surface features of gating modifier toxins. Journal of Molecular Biology, 2000, vol. 297, iss. 3, pp. 771–780. https://doi.org/10.1006/jmbi.2000.3609
47. Takeuchi K., Park E. J., Lee C. W., Takeuchi K., Park E. J., Lee C. W., Kim J. I., Takahashi H., Swartz K. J., Shimada I. Solution structure of ω-grammotoxin SIA, a gating modifier of P/Q and N-type Ca2+ channel. Journal of Molecular Biology, 2002, vol. 321, iss. 3, pp. 517–526. https://doi.org/10.1016/s0022-2836(02)00595-8
48. Tilley D. C., Angueyra J. M., Eum K. S., Kim H., Chao L.H., Peng A.W., Sack J.T. The tarantula toxin GxTx detains K+ channel gating charges in their resting conformation. Journal of General Physiology, 2019, vol. 151, iss. 3, pp. 292–315. https://doi.org/10.1085/jgp.201812213
49. Vassilevski A. A., Kozlov S. A., Grishin E. V. Molecular diversity of spider venom. Biochemistry, 2009, vol. 74, no. 13, pp. 1505–1534. https://doi.org/10.1134/S0006297909130069
50. Whittaker R. H., Feeny P. P. Allelochemics: Chemical interactions between species. Science, 1971, vol. 17, no. 3973, pp. 757–770. https://doi.org/10.1126/science.171.3973.757
51. Wigger E., Kuhn-Nentwig L., Nentwig W. The venom optimisation hypothesis: A spider injects large venom quantities only into difficult prey types. Toxicon, 2002, vol. 40, iss. 6, pp. 749–752. https://doi.org/10.1016/s0041-0101(01)00277-x
52. World Spider Catalog. Version 25.0. Bern, Natural History Museum, 2024. Available at: http://wsc.nmbe.ch/ (accessed January 21, 2024). https://doi.org/10.24436/2
53. Wright Z. V. F., McCarthy S., Dickman R., Reyes F. E., Sanchez-Martinez S., Cryar A., Kilford I., Hall A. The role of disulfide bond replacements in analogues of the tarantula toxin ProTxII and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7. J. Journal of the American Chemical Society, 2017, vol. 139, no. 37, pp. 13063–13075. https://doi.org/10.1021/jacs.7b06506
54. Xiao Y., Tang J., Hu W., Xie J., Maertens C., Tytgat J., Liang S. Jingzhaotoxin-I, a novel spider neurotoxin preferentially inhibiting cardiac sodium channel inactivation. Journal of Biological Chemistry, 2004, vol. 280, iss. 13, pp. 12069–12076. https://doi.org/10.1074/jbc.m411651200
55. Yuan C. H., He Q. Y., Peng K., Diao J.-B., Jiang L.-P., Tang X., Liang S.-P. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE, 2008, vol. 3, no. 10, article no. e3414. https://doi.org/10.1371/journal.pone.0003414
Рецензия
Для цитирования:
Гелашвили Д.Б., Романова Е.Б. Токсины яда пауков-птицеедов (Theraphosidae, Arachnida) в межвидовых взаимодействиях. ПОВОЛЖСКИЙ ЭКОЛОГИЧЕСКИЙ ЖУРНАЛ. 2024;(4):410 – 430. https://doi.org/10.35885/1684-7318-2024-4-410-430
For citation:
Gelashvili D.B., Romanova E.B. Toxins of the venom of tarantulas (Theraphosidae, Arachnida) in interspecies interactions. Povolzhskiy Journal of Ecology. 2024;(4):410 – 430. (In Russ.) https://doi.org/10.35885/1684-7318-2024-4-410-430