Preview

ПОВОЛЖСКИЙ ЭКОЛОГИЧЕСКИЙ ЖУРНАЛ

Расширенный поиск

Снижение полового диморфизма метаморфов чесночницы Палласа (Pelobates vespertinus: Anura, Pelobatidae) при развитии головастиков в перегретом водоеме

https://doi.org/10.35885/1684-7318-2024-3-304-322

Аннотация

Исследование проведено в пяти локальных популяциях Pelobates vespertinus (Pallas, 1771) в пойме р. Медведица (Россия, Саратовская область, Лысогорский район) в 2009 – 2018 гг. Показано, что половой диморфизм по длине (SDIL) и весу (SDIW) тела самцов и самок чесночницы Палласа – широко распространенная особенность популяций P. vespertinus, характерная не только для особей, достигших половой зрелости, но и для метаморфов. В популяциях метаморфов половой диморфизм по длине тела составляет в среднем 3%, а по живому весу – 9%. У метаморфов он менее выражен, чем у особей, достигших половой зрелости (в 3 и 4.5 раза соответственно). Уровень развития полового диморфизма может подвергаться существенной трансформации температурными условиями в период развития головастиков в нерестовом водоеме. Пороговое значение средней температуры воды за период развития до стадии метаморфоза (MDT90), при котором у метаморфов утрачиваются различия между самцами и самками по длине тела, составляет 18.2ºС. На фоне потепления климата в течение последнего десятилетия (2011 – 2020 гг.) происходит значительное расширение площади ареала этого вида, подверженной воздействию аномально высокой температуры воды. Тем не менее, размерно-весовой половой диморфизм даже на стадии метаморфоза вряд ли стоит исключать из числа диагностических признаков вида.

Об авторах

М. В. Ермохин
Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского
Россия

Ермохин Михаил Валентинович - Кафедра морфологии и экологии животных.

410012, Саратов, ул. Астраханская, д. 83



В. Г. Табачишин
Саратовский филиал Института проблем экологии и эволюции им. А.Н. Северцова РАН Россия
Россия

Табачишин Василий Григорьевич

410028, Саратов, ул. Рабочая, д. 24



Список литературы

1. Adams D. C., Glynne E., Kaliontzopoulou A. Interspecific allometry for sexual shape dimorphism: Macroevolution of multivariate sexual phenotypes with application to Rensch’s Rule. Evolution, 2020, vol. 74, iss. 9, pp. 1908–1922. https://doi.org/10.1111/evo.14049

2. Angilletta M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford, Oxford University Press, 2009. 302 p.

3. Arietta A. Z. A., Freidenburg L. K., Urban M. C., Rodrigues S. B., Rubinstein A., Skelly D. K. Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: A 20‐year study. Ecography, 2020, vol. 43, iss. 12, pp. 1791–1800. https://doi.org/10.1111/ecog.05297

4. Atkinson D. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research, 1994, vol. 25, pp. 1–58. https://doi.org/10.1016/S0065-2504(08)60212-3

5. Berven K. A. The genetic basis of altitudinal variation in the wood frog Rana sylvatica II. An experimental analysis of larval development. Oecologia, 1982, vol. 52, iss. 3, pp. 360–369.

6. Bókony V., Kövér S., Nemesházi E., Liker A., Székely T. Climate-driven shifts in adult sex ratios via sex reversals: The type of sex determination matters. Philosophical Transactions of the

7. Royal Society B: Biological Sciences, 2017, vol. 372, iss. 1729, article no. 20160325. http://doi.org/10.1098/rstb.2016.0325

8. Chardard D., Penrad-Mobayed M., Chesnel A., Pieau C., Dournon C. Thermal sex reversals in amphibians. In: Valenzuela N., Lance V. A., eds. Temperature-Dependent Sex Determination in Vertebrates. Smithsonian, Smithsonian Institution Scholarly Press, 2004, pp. 59–67 https://doi.org/10.5479/si.9781944466213

9. Charnier M. Action of temperature on the sex ratio in the Agama agama (Agamidae, Lacertilia) embryo. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 1966, vol. 160, pp. 620–622.

10. Corn P. S. Straight-line drift fences and pitfall traps. In: Heyer W. R., Donelly M. A., McDiarmid R. W., Hayek L.-A., Foster M. S., eds. Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians. Washington, Smithsonian Institution Press, 1994, pp. 109–117.

11. Dournon C., Houillon C., Pieau C. Temperature sex-reversal in amphibians and reptiles. International Journal of Developmental Biology, 1990, vol. 34, pp. 81–92.

12. Dufresnes C., Strachinis I., Tzoras E., Litvinchuk S. N., Denoël M. Call a spade a spade: Taxonomy and distribution of Pelobates, with description of a new Balkan endemic. ZooKeys, 2019, vol. 859, pp. 131–158. https://doi.org/10.3897/zookeys.859.33634

13. Eggert C. Sex determination: The amphibian models. Reproduction Nutrition Development, 2004, vol. 44, no. 6, pp. 539–549. https://doi.org/10.1051/rnd:2004062

14. Eggert C., Guyétant R. Age structure of a spadefoot toad Pelobates fuscus (Pelobatidae) population. Copeia, 1999, vol. 1999, no. 4, pp. 1127–1130. https://doi.org/10.2307/1447991

15. Ermokhin M. V., Tabachishin V. G. Size and sex structure dynamics of Pelobates fuscus (Laurenti, 1768) toadlets in the Medveditsa River floodplain. Current Studies in Herpetology, 2010, vol. 10, iss. 3–4, pp. 101–108 (in Russian).

16. Flament S. Sex reversal in amphibians. Sexual Development, 2016, vol. 10, iss. 5–6, pp. 267–278. https://doi.org/10.1159/000448797

17. Flament S., Chardard D., Chesnel A., Dumond H. Sex determination and sexual differentiation in amphibians. In: Norris D. O., Lopez K. H., eds. Hormones and Reproduction of Vertebrates. Vol. 2: Amphibians. London, Academic Press, 2011, pp. 1–19. https://doi.org/10.1016/b978-0-12-374931-4.10001-x

18. Green T., Das E., Green D. M. Springtime emergence of overwintering toads, Anaxyrus fowleri, in relation to environmental factors. Copeia, 2016, vol. 104, iss. 2, pp. 393–401. https://doi.org/10.1643/CE-15-323

19. Hagen ten L., Rodríguez A., Menke N., Göcking C., Bisping M., Frommolt K.-H., Ziegler T., Bonkowski M., Vences M. Vocalizations in juvenile anurans: Common spadefoot toads (Pelobates fuscus) regularly emit calls before sexual maturity. The Science of Nature, 2016, vol. 103, iss. 9–10, article no. 75. https://doi.org/10.1007/s00114-016-1401-0

20. Hammer O., Harper D. A. T., Ryan P. D. PAST: Paleontological Statistics software package for education and data analysis. Paleontologia Electronica, 2001, vol. 4, no. 1, pp. 1–9.

21. Han X., Fu J. Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evolutionary Biology, 2013, vol. 13, iss. 1, article no. 27. https://doi.org/10.1186/1471-2148-13-27

22. Hayes T. B. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms. Journal of Experimental Zoology, 1998, vol. 281, iss. 5, pp. 373–399.

23. Juszczyk W. Płazy i Gady Krajowe. Warszawa, PWN, 1974. 721 p.

24. Kowalewski L. Observations on the phenology and. ecology of amphibia in the region of Częstochowa. Acta Zoologica Cracoviensia, 1974, vol. 19, pp. 391–460.

25. Kupfer A. Sexual size dimorphism in amphibians: an overview. In: Fairbairn D. J., Blanckenhorn W. U., Szekely T., eds. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. New York, Oxford University Press, 2007, pp. 50–59.

26. Lada G. A., Borkin L. J., Litvinchuk S. N. Morphological variation in two cryptic forms of the common Spadefoot toad (Pelobates fuscus) from Eastern Europe. Russian Journal of Herpetology, 2005, vol. 12, suppl., pp. 53–56.

27. Lambert M. R., Stoler A. B., Smylie M. S., Relyea R. A., Skelly D. K. Interactive effects of road salt and leaf litter on wood frog sex ratios and sexual size dimorphism. Canadian Journal of Fisheries and Aquatic Sciences, 2017, vol. 74, iss. 2, pp. 141–146. https://doi.org/10.1139/cjfas-2016-0324

28. Lance V. A. Is regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2009, vol. 311A, iss. 5, pp. 314–322. https://doi.org/10.1002/jez.465

29. Liao W. B., Zeng Y., Zhou C. Q., Jehle R. Sexual size dimorphism in anurans fails to obey Rensch’s rule. Frontiers Zoology, 2013, vol. 10, article no. 10. https://doi.org/10.1186/1742-9994-10-10

30. Lovich J. E., Gibbons J. W. A review of techniques for quantifying sexual size dimorphism. Growth, Development and Aging, 1992, vol. 56, iss. 3, pp. 269–281.

31. Lyapkov S. M. Geographical variability and sex differences in body length and age composition in grass frog: Formation and patterns of manifestation. Principles of Ecology, 2012, vol. 1, no. 2, pp. 22–44 (in Russian).

32. Lyapkov S. M., Kornilova M. B., Marchenkovskaya A. A., Missura A. N., Gasso V. Y. Peculiarities of age composition, size sexual differences and reproductive characteristics in Rana arvalis populations from southern part of the range. In: Dujsebayeva T. N., ed. Herpetological Researches in Kazakhstan and Adjacent Countries. Almaty, ACBK–SOPK, 2010, pp. 150–165 (in Russian).

33. Miaud C., Guyétant R., Elmberg J. Variations in life‐history traits in the common frog Rana temporaria (Amphibia: Anura): A literature review and new data from the French Alps. Journal of Zoology, 1999, vol. 249, iss. 1, pp. 61–73. https://doi.org/10.1111/j.1469-7998.1999.tb01060.x

34. Monnet J. M., Cherry M. I. Sexual size dimorphism in anurans. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2002, vol. 269, iss. 1507, pp. 2301–2307. https://doi.org/10.1098/rspb.2002.2170

35. Nali R. C., Zamudio K. R., Haddad C. F. B., Prado C. P. A. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. The American Naturalist, 2014, vol. 184, iss. 6, pp. 727–740. https://doi.org/10.1086/678455

36. Nöllert A. Die Knoblauchkröte. Neue Brehm-Bücherei, 1990, Bd. 561. 144 S.

37. Nöllert A., Grossenbacher K., Laufer H. Pelobates fuscus (Laurenti, 1768) – Knoblauchkröte. In: Grossenbacher K., ed. Handbuch der Reptilien und Amphibien Europas. Band 5/I, Froschlurche (Anura) I. Wiebelsheim, AULA-Verlag GmbH, 2012, pp. 465–562.

38. Ogielska M., Kotusz A. Pattern and rate of ovary differentiation with reference to somatic development in anuran amphibians. Journal of Morphology, 2003, vol. 259, iss. 1, pp. 41–54. https://doi.org/10.1002/jmor.10162

39. Oldham R. S. Initiation of breeding behavior in the American toad, Bufo americanus. Canadian Journal of Zoology, 1969, vol. 47, pp. 1083–1108.

40. Piquet J. Détermination du sexe chez les batraciens en fonction de la temperature. Revue Suisse de Zoologie, 1930, vol. 37, pp. 173–281.

41. Reading C. J. The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia, 1998, vol. 117, iss. 4, pp. 469–475. https://doi.org/10.1007/s004420050682

42. Rensch B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergröße. Bonner Zoologische Beiträge, 1950, Bd. 1, S. 58–69.

43. Romano A., Ficetola G. F. Ecogeographic variation of body size in the spectacled salamanders (Salamandrina): Influence of genetic structure and local factors. Journal of Biogeography, 2010, vol. 37, iss. 12, pp. 2358–2370. https://doi.org/10.1111/j.1365-2699.2010.02369.x

44. Rot-Nikcevic I., Sidorovsca V., Dzukic G. V., Kalezic M. L. Sexual size dimorphism and life history traits of two European Spadefoot toads (Pelobates fuscus and P. syriacus) in allopatry and sympatry. Annales, Series Historia Naturalis, 2001, vol. 11, iss. 1, pp. 107–120.

45. Ruchin A. B. Ecology of amphibians and reptiles of Mordovia. Report 1. Pallas' spadefoot, Pelobates vespertinus (Pallas, 1771). Proceedings of the Mordovia State Nature Reserve, 2014, vol. 12, pp. 337–349 (in Russian).

46. Ruiz-García A., Roco, Á. S., Bullejos M. Sex differentiation in amphibians: Effect of temperature and its influence on sex reversal. Sexual Development, 2021, vol. 15, iss. 1–3, pp. 157–167. https://doi.org/10.1159/000515220

47. Schӓuble C. S. Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biological Journal of the Linnean Society, 2004, vol. 82, iss. 1, pp. 39–56.

48. Shine R. Sexual selection and sexual dimorphism in the amphibia. Copeia, 1979, vol. 1979, iss. 2, pp. 297–306. https://doi.org/10.2307/1443418

49. Shine R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Quarterly Review of Biology, 1989, vol. 64, iss. 4, pp. 419–461. https://doi.org/10.1086/416458

50. Smith D. C. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis. Ecology, 1987, vol. 68, iss. 2, pp. 344–350. https://doi.org/10.2307/1939265

51. Stănescu F., Forti L. R., Cogălniceanu D., Márquez R. Release and distress calls in European spadefoot toads, genus Pelobates. Bioacoustics, 2019, vol. 28, iss. 3, pp. 224–238. https://doi.org/10.1080/09524622.2018.1428116

52. Uchida T. Studies on the sexuality of amphibia III. Sex-transformation in Hynobius retardus by the function of high temperature. Journal of the Faculty of Science Hokkaido Imperial University, Series VI. Zoology, 1937, vol. 6, pp. 59–71.

53. Ujszegiab J., Bertalan R., Ujhegyi N., Verebélyi V., Nemesházi E. Mikó Z., Kásler A., Herczeg D., Szederkényi M., Vili N., Gál Z. Hoffmann O. I., Bókony V., Hettyey A. “Heat waves” experienced during larval life have species-specific consequences on life-history traits and sexual development in anuran amphibians. Science of The Total Environment, 2022, vol. 835, article no. 155297. https://doi.org/10.1016/j.scitotenv.2022.155297

54. Wallace H., Badawy G. M. I., Wallace B. M. N. Amphibian sex determination and sex reversal. Cellular and Molecular Life Sciences, 1999, vol. 55, iss. 7, pp. 901–909. https://doi.org/10.1007/s000180050343

55. Wells K. D. The Ecology and Behavior of Amphibians. Chicago, University of Chicago Press, 2007. 1400 p.

56. Williams D. D. The Ecology of Temporary Waters. Dordrecht, Springer, 1987. 206 p.

57. Witschi E. Studies on sex differentiation and sex determination in amphibians II. Sex reversal in female tadpoles of Rana sylvatica following application of high temperature. Journal of Experimental Zoology, 1929, vol. 52, pp. 267–291.

58. Woolbright L. L. Sexual selection and size dimorphism in anuran amphibia. American Naturalist, 1983, vol. 121, iss. 1, pp. 110–119.

59. Yermokhin M. V., Tabachishin V. G. Abundance accounting result convergence of Pelobates fuscus (Laurenti, 1768) migrating toadlets at full and partial enclosing of a spawning waterbody by drift fences with pitfalls. Current Studies in Herpetology, 2011a, vol. 11, iss. 3–4, pp. 121–131 (in Russian).

60. Yermokhin M. V., Tabachishin V. G. Reproductive parameters of females Pelobates fuscus (Laurenti, 1768) as functions of size and weight characteristics. Current Studies in Herpetology, 2011b, vol. 11, iss. 1–2, pp. 28–39 (in Russian).

61. Yermokhin M. V., Tabachishin V. G. False spring in the spawning migrations of spadefoot toads (Pelobates, Anura): Distribution in the European Russia and the phenomenon scale in 2020. Povolzhskiy Journal of Ecology, 2022a, no. 1, pp. 3–16 (in Russian). https://doi.org/10.35885/1684-7318-2022-1-3-16

62. Yermokhin M. V., Tabachishin V. G. False spring in the Southeastern European Russia and anomalies of the phenology of spawing migrations of the Pallas’ spadefoot toad Pelobates vespertinus (Pelobatidae, Amphibia). Russian Journal of Herpetology, 2022b, vol. 29, no. 4, pp. 206–214.

63. Yermokhin M. V., Tabachishin V. G. Environmental predictors of the onset of spawning migration in Pelobates vespertinus (Anura: Pelobatidae). South American Journal of Herpetology, 2023, vol. 29, pp. 18–26. https://doi.org/10.2994/SAJH-D-21-00003.1

64. Yermokhin M. V., Tabachishin V. G., Bogoslovsky D. S., Ivanov G. A. Noninvasive sex determination of spadefoot toad (Pelobates fuscus) toadlets by morphometric and weigh characteristics. Current Studies in Herpetology, 2012, vol. 12, iss. 1–2, pp. 40–48 (in Russian).

65. Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Body condition dynamics of Pelobates fuscus (Pelobatidae, Anura) toadlets during their migration from spawning waterbodies. Current Studies in Herpetology, 2015a, vol. 15, iss. 1–2, pp. 39–54 (in Russian).

66. Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Spawning migration phenology of the spadefoot toad Pelobates fuscus (Pelobatidae, Amphibia) in the valley of the Medveditsa River (Saratov Oblast). Biology Bulletin, 2015b, vol. 42, no. 10, pp. 931–936. https://doi.org/10.1134/S1062359015100040

67. Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Long-term dynamics of the size-weight and sexual structure in populations of Pelobates fuscus (Anura, Pelobatidae) in the Medveditsa River valley (Saratov Region). Current Studies in Herpetology, 2016, vol. 16, iss. 3–4, pp. 113–122 (in Russian).

68. Zhang L., Lu X. Sexual size dimorphism in anurans: Ontogenetic determination revealed by an across-species comparison. Evolutionary Biology, 2013, vol. 40, iss. 1, pp. 84–91. https://doi.org/10.1007/s11692-012-9187-2


Рецензия

Для цитирования:


Ермохин М.В., Табачишин В.Г. Снижение полового диморфизма метаморфов чесночницы Палласа (Pelobates vespertinus: Anura, Pelobatidae) при развитии головастиков в перегретом водоеме. ПОВОЛЖСКИЙ ЭКОЛОГИЧЕСКИЙ ЖУРНАЛ. 2024;(3):304-322. https://doi.org/10.35885/1684-7318-2024-3-304-322

For citation:


Yermokhin M.V., Tabachishin V.G. Sexual dimorphism of the Pallas spadefoot toad (Pelobates vespertinus: Anura, Pelobatidae) metamorphs is reduced when tadpoles are developed in an overheated water body. Povolzhskiy Journal of Ecology. 2024;(3):304-322. (In Russ.) https://doi.org/10.35885/1684-7318-2024-3-304-322

Просмотров: 983


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)