Seasonal changes in the total mercury in small mammals in forest ecosystems near Cherepovets town, Vologda region
https://doi.org/10.35885/1684-7318-2024-3-257-267
Abstract
Mercury is one of the most dangerous environmental pollutants due to its high toxicity to animals and humans. The aim of the study was to determine the presence or absence of seasonal changes in the mercury level in small mammals in forest ecosystems near the Cherepovets town. The fur, organs and tissues of the common shrew (Sorex araneus Linnaeus, 1758) and Ural field mouse (Apodemus uralensis Pallas, 1811) were examinied during September 2020–August 2021. The content of total mercury (THg) in dried samples (n = 319) was determined on a PA-915+ mercury analyzer with a PYRO console by cold vapor atomic absorption. The content of THg in the Ural field mouse varies from <0.001 (sensitivity limit of the device) in the kidneys, spleen, brain, muscles, and liver up to 0.560 mg/kg dry weight in the spleen; the average maximum THg value was found in the spleen (0.179±0.072 mg/kg) and the minimum was in the muscles (0.023±0.011 mg/kg). The content of THg in the common shrew varies from <0.001 (sensitivity limit of the device) in the brain up to 4.570 mg/kg dry weight in the fur, the average maximum THg value was found in the fur (0.754±0.152 mg/kg), and the average minimum was in the liver (0.112±0.013 mg/kg). It was established that the level of THg in common shrews was higher in winter than in summer, statistically significant differences were found for the fur, muscles, and liver (p = 0.008, 0.001, 0.033, respectively, at p < 0.05). An interspecies comparison showed differences in seasonal changes in the THg content, namely: in autumn it was higher in the common shrew than in the Ural field mouse; statistically significant differences were found for the fur, kidneys, and muscles (p = 0.005, 0.046, 0.001, respectively, at p < 0.05).
About the Authors
E. A. AgeevaRussian Federation
Elena A. Ageeva - Laboratory of Ecological Parasitology.
5 Lunacharskogo Ave., Cherepovets 162600; Borok village, Nekouzsky district, Yaroslavl region 152742
N. Ya. Poddubnaya
Russian Federation
Nadezhda Ya. Poddubnaya
5 Lunacharskogo Ave., Cherepovets 162600
M. O. Schukina
Russian Federation
Maria O. Schukina
5 Lunacharskogo Ave., Cherepovets 162600; Borok village, Nekouzsky district, Yaroslavl region 152742
References
1. Aristov A. A., Bashenina N. V., Bernstein A. D., Bolshakov V. N., Voronov G. A., Demidov V. V., Gambaryan P. P., Gaiduk V. E., Gebchinsky M., Golisheva V., Grabe B., Eremina I. V., Zablotskaya L. V., Zeida Y., Ivanter E. V., Kalyakin V. N., Kratohvil J., Kryzhanovskaya V. V., Kudryashova L. M., Likyavichene N. M., Maldzhunaite S. A., Miholap O. N., Moskvitina N. S., Myasnikov Yu. A., Obrtel R., Okulova N. M., Povalishina T. P., Prusaite Ya. A., Ryltseva E. V., Samarsky S. L., Skurat L. N., Sokolov V. E., Sokolov G. A., Suchkova N. G., Terekhovich V. F., Turyeva V. V., Ushakov V. P., Khokhlova I. G., Shaldybin L. S., Shubin N. G. Bank Vole. Moscow, Nauka, 1981. 268 p. (in Russian).
2. Baeyens W., Ebinghaus R., Vasiliev O., eds. Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances. Dordrecht, Kluwer Academic Publishers, 1996. 563 p.
3. Ballová Z. K., Janiga M., Holub M., Chovancová G. Temporal and seasonal changes in mercury accumulation in Tatra chamois from West Carpathians. Environmental Science and Pollution Research, 2021, vol. 28, iss. 37, pp. 52133–52146. https://doi.org/10.1007/s11356-021-14380-w
4. Bull K. R., Roberts R. D., Inskip M. J., Goodman G. T. Mercury concentrations in soil, grass, earthworms, and small mammals near an industrial emission source. Environmental Pollution, 1977, vol. 12, iss. 2, pp. 135–140. https://doi.org/10.1016/0013-9327(77)90016-7
5. de Almeida Rodrigues P., Ferrari R. G., Hauser-Davis R. A., Dos Santos L. N., ConteJunior C. A. Seasonal influences on swimming crab mercury levels in an eutrophic estuary located in southeastern Brazil. Environmental Science and Pollution Research, 2020, vol. 27, iss. 3, pp. 3473–3482. https://doi.org/10.1007/s11356-019-07052-3
6. Eagles-Smith C. A., Wiener J. G., Eckley C. S., Willacker J. J., Evers D. C., MarvinDiPasquale M., Obrist D., Fleck J. A., Aiken G. R., Lepak J. M., Jackson A. K., Webster J. P., Stewart A. R., Davis J. A., Alpers C. N., Ackerman J. T. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of the Total Environment, 2016, vol. 568, pp. 1213–1226. https://doi.org/10.1016/j.scitotenv.2016.05.094
7. Ershova T. S., Zaitsev V. F. Content of mercury in organs and tissues of Caspian seal (Phoca caspica Gmelin, 1788). South of Russia: Ecology, Development, 2016, vol. 11, no. 1, pp. 69–78 (in Russian). https://doi.org/10.18470/1992-1098-2016-1-69-78
8. Fernández Á. J., Aboal J. R., Gonzalez X. I., Carballeira A. Transfer and bioaccumulation variability of Cd, Co, Cr, Hg, Ni and Pb in trophic compartments of terrestrial ecosystems in northern Spain. Fresenius Environmental Bulletin, 2012, vol. 21, iss. 11, pp. 3527–3532.
9. Gremyachikh V., Kvasov D., Ivanova E. Patterns of mercury accumulation in the organs of bank vole Myodes glareolus (Rodentia, Cricetidae). Biosystems Diversity, 2019, vol. 27, no. 4, pp. 329–333. https://doi.org/10.15421/011943
10. Ivanova E. S., Komov V. T., Poddubnaya N. Ya., Gremyachikh V. A. Insectivores, Rodents, Mustelids and Canines of Near-water Territories and Their Participation in Mercury Transport in the Ecosystems of the Vologda Oblast. Cherepovets, Cherepovets State University Publ., 2014. 184 p. (in Russian).
11. Ivanter E. V. Mammals of Karelia. Petrozavodsk, Petrozavodsk State University Press, 2008. 296 p. (in Russian).
12. Jedruch A., Falkowska L., Saniewska D., Durkalec M., Nawrocka A., Kalisińska E., Pacyna J. M. Status and trends of mercury pollution of the atmosphere and terrestrial ecosystems in Poland. Ambio, 2021, vol. 50, iss. 9, pp. 1698–1717. https://doi.org/10.1007/s13280-021-01505-1
13. Kelly B. C., Myo A. N., Pi N., Bayen S., Leakhena P. C., Chou M., Tan B. H. Human exposure to trace elemenets in central Cambodia: Influence of seasonal hydrology and food-chain bio-accumulation behaviour. Ecotoxicology and Environmental Safety, 2018, vol. 162, pp. 112–120. https://doi.org/10.1016/j.ecoenv.2018.06.071
14. Keva O., Hayden B., Harrod C., Kahilainen K. K. Total mercury concentrations in liver and muscle of European whitefish (Coregonus lavaretus (L.)) in a subarctic lake – Assessing the factors driving year-round variation. Environmental Pollution, 2017, vol. 231, pp. 1518–1528. https://doi.org/10.1016/j.envpol.2017.09.012
15. Komov V. T., Ivanova E. S., Poddubnaya N. Y., Gremyachikh V. A. Mercury in soil, earthworms and organs of voles Myodes glareolus and shrew Sorex araneus in the vicinity of an industrial complex in Northwest Russia (Cherepovets). Environmental Monitoring and Assessment, 2017, vol. 189, iss. 3, article no. 104. https://doi.org/10.1007/s10661-017-5799-4
16. Lane O., Adams E. M., Pau N., O'Brien K. M., Regan K., Farina M., Schneider-Moran T., Zarudsky J. Long-term monitoring of mercury in adult saltmarsh sparrows breeding in Maine,
17. Massachusetts and New York, USA 2000–2017. Ecotoxicology, 2020, vol. 29, iss. 8, pp. 1148–1160. https://doi.org/10.1007/s10646-020-02180-w
18. Levengood J. M., Heske E. J. Heavy metal exposure, reproductive activity, and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated floodplain wetland. Science of the Total Environment, 2008, vol. 389, iss. 2-3, pp. 320–328. https://doi.org/10.1016/j.scitotenv.2007.08.050
19. Ma M., Wang D., Sun T., Zhao Z., Du H. Forest runoff increase mercury output from subtropical forest catchments: an example from an alpine reservoir in a national nature reserve (southwestern China). Environmental Science and Policy, 2015, vol. 22, iss. 4, pp. 2745–2756. https://doi.org/10.1007/s11356-014-3549-5
20. Martinková B., Janiga M., Pogányová A. Mercury contamination of the snow voles (Chionomys nivalis) in the West Carpathians. Environmental Science and Pollution Research, 2019, vol. 26, iss. 35, pp. 35988–35995. https://doi.org/10.1007/s11356-019-06714-6
21. Overjordet I. B., Kongsrud M. B., Gabrielsen G. W., Berg T., Ruus A., Evenset A., Borgå K., Christensen G., Jenssen B. M. Toxic and essential elements changed in black-legged kittiwakes (Rissa tridactyla) during their stay in an Arctic breeding area. Science of the Total Environment, 2015, vol. 502, pp. 548–556. https://doi.org/10.1016/j.scitotenv.2014.09.058
22. Pacyna E. G., Pacyna J. M., Steenhuisen F., Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 2006, vol. 40, iss. 22, pp. 4048–4063. https://doi.org/10.1016/j.atmosenv.2006.03.041
23. Pastukhov M. V., Epov V. N., Ciesielski T., Alieva V. I., Grebenshchikova V. I. Distribution and bioaccumulation of mercury in Baikal seal. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2011, vol. 4, no. 1, pp. 56–66 (in Russian).
24. Petkovšek S., Kopušar N., Kryštufek B. Small mammals as biomonitors of metal pollution: A case study in Slovenia. Environmental Monitoring and Assessment, 2014, vol. 186, pp. 4261–4274. https://doi.org/10.1007/s10661-014-3696-7
25. Poddubnaya N. Ya., Eltsova L. S., Fishchenko N. M., Salkina G. P., Voloshina I. V., Ivanova Ye. S. Mercury concentration in the tissues of the three abundant shrew species (Sorex unguiculatus, S. caecutiens, and S. isodon) inhabiting the Sikhote-Alin mountain system. Journal of Critical Reviews, 2020, vol. 7, iss. 13, pp. 2850–2861. https://doi.org/10.31838/jcr.07.13.436
26. Poddubnaya N. Y., Salkina G. P., Eltsova L. S., Ivanova E. S., Oleynikov A. Yu., Pavlov D. D., Kryukov V. Kh., Rumyantseva O. Yu. Mercury content in the Siberian tiger (Panthera tigris altaica Temminck, 1844) from the coastal and inland areas of the Russia. Scientific Reports, 2021, vol. 11, article no. 6923. https://doi.org/10.1038/s41598-021-86411-y
27. Pokorny B., Ribaric-Lasnik C. Seasonal variability of mercury and heavy metals in roe deer (Capreolus capreolus) kidney. Environmental Pollution, 2002, vol. 117, iss. 1, pp. 35–46. https://doi.org/10.1016/S0269-7491(01)00161-0
28. Roodbergen M., Klok C., VanDerHout A. Transfer of heavy metals in food chain earthworm Black-tailed godwit (Limosa limosa): Comparison of polluted and reference site in the Netherlands. Science of the Total Environment, 2008, vol. 406, iss. 3, pp. 407–412. https://doi.org/10.1016/j.scitotenv.2008.06.051
29. Rutkowska M., Bajger-Nowak G., Kowalewska D., Bzoma S., Kalisińska E., Namieśnik J., Konieczka Р. Methylmercury and total mercury content in soft tissues of two birdspecies wintering in the Baltic Sea near Gdansk, Poland. Chemosphere, 2019, vol. 219, pp. 140–147. https://doi.org/10.1016/j.chemosphere.2018.11.162
30. Sheftel B. I. Metods for estimating the abundence of small mammals. Russian Journal of Ecosystem Ecology, 2018, vol. 3, no. 3, pp. 1–21 (in Russian). https://doi.org/10.21685/2500-0578-2018-3-4
31. St. Pierre K. A., St. Louis V. L., Kirk Lehnherr I., Wang S., La Farge C. Importance of open marine waters to the enrichment of total mercury and monomethylmercury in lichens in the Canadian high arctic. Environmental Science & Technology, 2015, vol. 49, iss. 10, pp. 5930–5938. https://doi.org/10.1021/acs.est.5b00347
32. Weiss-Penzias P. S., Bank M. S., Clifford D. L., Torregrosa A., Zheng B., Lin W., Wilmers C. C. Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web. Scientific Reports, 2019, vol. 9, article no. 17611. https://doi.org/10.1038/s41598-019-54056-7
Review
For citations:
Ageeva E.A., Poddubnaya N.Ya., Schukina M.O. Seasonal changes in the total mercury in small mammals in forest ecosystems near Cherepovets town, Vologda region. Povolzhskiy Journal of Ecology. 2024;(3):257-267. (In Russ.) https://doi.org/10.35885/1684-7318-2024-3-257-267