Preview

Povolzhskiy Journal of Ecology

Advanced search

Spread of antibiotic-resistant actinobacteria in soils exposed to various types of anthropogenic impact

https://doi.org/10.35885/1684-7318-2024-1-98-114

Abstract

The work investigated the spectra of resistance to a certain set of antibiotics and the frequency of occurrence of resistant strains among typical soil bacteria – actinomycetes. Equal samples of isolates from sod-podzolic soil were used,  selected at sites typifying various types of economic activity, namely: the production areas of a plywood factory and a chemical plant, the territory of a medical institution, and a solid waste collection and storage site. A total of 58 isolates with features characteristic of actinomycetes of the genus Streptomyces of the sections Cinereus, Helvolo-Flavus and Albus were obtained. It has been established that various types of economic activity lead to specific changes in the antibiotic resistance, which characterizes the soil of a natural grass-grass meadow (back-ground). Isolates with resistance to nalidixic  acid, amoxicillin and ceftriaxone were found in the sample taken on the territory of the chemical plant more often than in the soil of the background site. The proportion of strains resistant to nalidixic acid, lincomycin and azithromycin was significantly (P<0.05) higher in the soil samples  taken at the MSW collection site and the territory of the medical institution, while those resistant  to nalidixic acid and amoxicillin were in the sample from the plywood factory Groups of antibiotics (quinolones – nalidixic acid, and  β-lactams – amoxicillin and ceftriaxone) were identified, the resistance to which in streptomyces isolates from soils involved in economic activity  was significantly higher than in soil isolates from the background territory. The data obtained in  the work indicate the need to monitor the spread of antibiotic resistance in soils that are not only at risk of accumulation of residual concentrations of antibiotics, but also other  consequences of anthropogenic influences.

About the Authors

I. G. Shirokikh
Federal Agrarian Scientific Center of the North-East named after N. V. Rudnitsky; Institute of Biology of Komi Science Centre of the Ural Branch of RAS
Russian Federation

Irina G. Shirokikh, Laboratory of Plant and Microorganism Biotechnology

166a Lenin St .,  Kirov 610007

28 Kommunisticheskaya St.,  Syktyvkar,  Republic of Komi 167982



E. A. Gembitskaya
Federal Agrarian Scientific Center of the North-East named after N. V. Rudnitsky
Russian Federation

Ekaterina A. Gembitskaya

166a Lenin St .,  Kirov 610007 



T. Ya. Ashikhmina
Institute of Biology of Komi Science Centre of the Ural Branch of RAS
Russian Federation

Tamara Ya. Ashikhmina

28 Kommunisticheskaya St.,  Syktyvkar,  Republic of Komi 167982



References

1. Azhogina T. N., Skugoreva S. G., Al-Rammahi A. A. K., Gnennaya N. V., Sazykina M. A., Sazykin I. S. Influence of pollutants on the spread of antibiotic resistance genes in the environment. Theoretical and Applied Ecology , 2020, no. 3, pp. 6–14 (in Russian). https://doi.org/10.25750/1995-4301-2020-3-006-014

2. Gause G. F., Preobrazhenskaya T. P., Sveshnikov a M. A., Terekhova L. P., Maksimova T. S. Opredelitel' aktinomitsetov . Rody Sreptomyces, Streptoverticillium, Chainia [The Determinant of Actinomycetes. Genera of Sreptomyces , Streptoverticillium, Chainia]. Moscow, Nauka, 1983. 248 p. (in Russian).

3. Dobrovolskaya T. G., Golovchenko A. V., Lysak L. V., Zenova G. M. Fizikokhimiya i biologiya torfa. Metody otsenki chislennosti i raznoobraziya bakterial'nykh i aktinomitsetnykh kompleksov torfianykh pochv [Physicochemistry and Biology of Peat. Methods for Estimating the Abundance and Diversity of Bacterial and Actinomycete Complexes of Peat Soils]. Tomsk, Tomsk State Pedagogical University Publ., 2010. 97 p. (in Russian).

4. Zavyalova N. E., Shirokikh I. G ., Vasbieva M. T., Fomin D. S. Influence of different types of land use on prokaryotic communities and organic matter stabilization in soddy-podzolic soil . Eurasian Soil Science , 2021, vol. 54, no. 2, pp. 232–239. https://doi.org/10.1134/S1064229321020162

5. Zvereva V. V., Boychenko M. N. Meditsinskaya mikrobiologiya, virusologiya i immunologiya: v 2 t . [Medical Microbiology, Virology and Immunology: in 2 vols]. Moscow, GEOTAR-Media, 2010, vol. 1. 448 p. (in Russian).

6. Zvyagintsev D. G. , Zenova G. M. Ekologiya aktinomitsetov [Ecology of Actinomycetes]. Moscow, GEOS, 2001. 256 p. (in Russian).

7. Sazykin I. S., Khmelevtsova L. E., Seliverstova E. Y., Sazykina M. A. Effect of antibiotics used in animal husbandry on the distributi on of bacterial drug resistance (review). Applied Biochemistry and Microbiology , 2021, vol. 57, no. 1, pp. 20–30. https://doi.org/10.1134/S0003683821010166

8. Hoult J., Krieg N., Snit P., Staley J., Williams S. S., eds. The Determinant of Bergi Bacteria: in 2 vols. Moscow, Mir, 1997, vo l. 2. 800 p. (in Russian).

9. Shirokikh I. G., Solov’eva E. S., Ashikhmina T. Y. Actinomycete complexes in soils of industrial and residential zone s in the city of Kirov. Eurasian Soil Science, 2014, vol. 47. no. 3, pp. 89–95. https://doi.org/10.1134/S1064229313100062

10. Afshinnekoo E ., Bhattacharya C., Burguete-García A., Castro-Nallar E., Deng Y ., Desnues C., Dias-Neto E., Elhaik E., Iraola G ., Jang S . COVID-19 drug practices risk antimicrobial resistance evolution // The Lancet Mi crobe. 2021. Vol. 2, no. 4. Р. 135 – 136. https://doi.org/10.1016/S2666-5247(21)00039-2

11. Aljeldah M. M. Antimicrobial resistance and its Spread Antimicrobial resistance and its Spread is a global threat // Antibiotics. 2 022. Vol. 11, iss. 8. Article number 1082. https://doi.org/10.3390/antibiotics11081082

12. Berg J ., Tom-Petersen A., Nybroe O . Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field // Letters in Applied Microbiology. 2005. Vol. 40, iss. 2. P. 146 – 151. https://doi.org/10.1111/j.1472-765X.2004.01650.x

13. Berglund B . Environmental dissemination of antibioti c resistance genes and correlation to anthropogenic contamination with antibiotics // Infection Ecology & Epidemiology. 2015. Vol. 5, iss. 1. Article number 28564. https://doi.org/10.3402/iee.v5.28564

14. Blair J. M., Webber M. A., Baylay A. J ., Ogbolu D. O., Piddock L. J. Molecular mechanisms of antibiotic resistance // Nature Reviews Mi crobiology. 2015. Vol. 13, iss. 1. P. 42 – 51. https://doi.org/10.1038/nrmicro3380

15. Cytryn E. The soil resistome: The anthropogenic, the native, and the unknown // Soil Biology and Biochemistry. 2013. Vol. 63. P. 18 – 23. https://doi.org/10.1016/j.soilbio.2013.03.017

16. D’Costa V. M., Griffiths E., Wright G. D. Expanding the soil antibiotic resistome: Exploring environmental diversity // Current Opinion in Microbiology. 2007. Vol. 10, iss. 5. P. 481 – 489. https://doi.org/10.1016/j.mib.2007.08.009

17. D’Costa V. M., McGrann K. M., Hughes D. W., Wright G. D. Sampling the antibiotic resistome // Science. 2006. Vol. 311, № 5759. P. 374 – 377. https://doi.org/10.1126/science.1120800

18. D’Costa V. M., King C. E., Kalan L. , Morar M., Sung W. W. , Schwarz C ., Froese D., Zazula G., Calmels F., Debruyne R., Golding G. B., Poinar H. N ., Wright G. D . Antibiotic resistance is ancient // Nature. 2011. Vol. 477, № 7365. P. 457 – 461. https://doi.org/10.1038/nature10388

19. Fatahi-Bafghi M . Antibiotic resistance genes in the Actinobacteria phylum // European Journal of Clinical Microbiology & Infectious Di seases. 2019. Vol. 38, iss. 9. P. 1599 – 1624. https://doi.org/10.1007/s10096-019-03580-5

20. Finley R. L., Collignon P ., Larsson D. J., McEwen S. A., Li X. Z ., Gaze W. H., Topp E . The scourge of antibiotic resistance: The important role of the environment // Clinical Infectious Diseases. 2013. Vol. 57, iss. 5. Р. 704 – 710. https://doi.org/10.1093/cid/cit355

21. Gaze W. H., Abdouslam N., Hawkey P. M., Wellington E. M . H. Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment // Antimicrobial Agents and Chemotherapy. 2005. Vol. 49, iss. 5. P. 1802 – 1807. https://doi.org/10.1128/AAC.49.5.1802-1807.2005

22. Getahun H., Smith I ., Trivedi K ., Paulin S., Balkhy H. H . Tackling antimicrobial resistance in the COVID-19 pandemic // Bulletin of the World Health Organization. 2020. Vol. 98, iss. 7. P. 442 – 442A. https://doi.org/10.2471/BLT.20.268573

23. Hu H. W., Wang J. T., Li J ., Li J. J ., Ma Y. B., Chen D., He J. Z. Field ‐ based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils // Environmental Microbiology. 2016. Vol. 18, iss. 11. P. 3896 – 3909. https://doi.org/10.1111/1462-2920.13370

24. Hu H. W., Wang J. T., Li J., Shi X. Z., Ma Y. B., Chen D., He J. Z . Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils // Environmental Science & Technology. 2017. Vol. 51, iss. 2. P. 790 – 800. https://doi.org/10.1021/acs.est.6b03383

25. Ikhimiukor O. O ., Odih E. E., Donado-Godoy P., Okeke I. N. A bottom-up view of antimicrobial resistance transmission in developing countries // Nature Microbiology. 2022. Vol. 7, iss. 6. P. 757 – 765. https://doi.org/10.1038/s41564-022-01124-w

26. Knapp C. W., McCluskey S. M., Singh B. K., Campbell C. D., Hudson G., Graham D. W. L . Antibiotic resistance gene bundances correlate with metal and geochemical conditions in archived Scottish soils // PLoS ONE. 2011. Vol. 6, iss. 11. Article number e27300. https://doi.org/10.1371/journal.pone.0027300

27. Kozhevin P. A ., Vinogradova K. A., Bulgakova V. G. The soil antibiotic resistome // Moscow University Soil Science Bulletin. 2013. Vol. 68, iss. 2. P. 53 – 59. https://doi.org/10.3103/S014768741302004X

28. Liu S., Han Z ., Zhu D ., Luan X., Deng L., Dong L., Zhang Y. Field-based evidence for the enrichment of intrinsic antibiotic resistome stimulated by plant-derived fertilizer in agricultural soil // Journal of Environmental Sciences. 2024. Vol. 135. P. 728 – 740. https://doi.org/10.1016/j.jes.2022.08.009

29. Livermore D. M . Antibiotic resistance during and beyond COVID-19 // JAC-Antimicrobial Resistance. 2021. Vol. 3, suppl. 1. P. 5 – 16. https://doi.org/10.1093/jacamr/dlab109

30. Lu X. M., Lu P. Z., Liu X. P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil // Science of th e Total Environment. 2020. Vol. 709. Article number 136276. https://doi.org/10.1016/j.scitotenv.2019.136276

31. O'neill J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations // The Review on Antimicrobial Resistance. 2014. Vol. 20. P. 1 – 16.

32. Ramakrishnan B., Venkateswarlu K ., Sethunathan N ., Megharaj M . Local applications but global implications: Can pesticides drive microorgan isms to develop antimicrobial resistance? // Science of the Total Environment. 2019. Vol. 654. P. 177 – 189. https://doi.org/10.1016/j.scitotenv.2018.11.041

33. Ryan M. C., Stucky M ., Wakefield C ., Melott J. M., Akbani R ., Weinstein J. N ., Broom B. M. Interactive clustered heat map builder: An easy web-based tool for creating sophisticated clustered heat maps // F1000Research. 2019. Vol. 8. Article number 1750. https://doi.org/10.12688/f1000research.20590.2

34. Seiler C., Berendonk T. U . Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture // Frontiers in Microbiology. 2012. Vol. 3. Article number 399. https://doi.org/10.3389/fmicb.2012.00399

35. Sun M. , Ye M., Wu J ., Feng Y., Shen F., Tian D., Liu K. , Hu F. , Li H., Jiang X ., Yang L., Kengara F. Impact of bioaccessible pyrene on the a bundance of antibiotic resistance genes during Sphingobium sp.-and sophorolipidenhanced bioremediation in soil // Journal of Hazardous Materials. 2015. Vol. 300. P. 121 – 128. https://doi.org/10.1016/j.jhazmat.2015.06.065

36. Walsh F., Duffy B. The culturable soil antibiotic resistome: A community of multi-drug resistant bacteria // PloS ONE. 20 13. Vol. 8, iss. 6. Article number e65567. https://doi.org/10.1371/journal.pone.0065567

37. Wright G. D. Q&A: Antibiotic resistance: Where does it come from and what can we do about it? // BMC Biology. 2010. Vol. 8. Article number 123. https://doi.org/10.1186/1741-7007-8-123


Review

For citations:


Shirokikh I.G., Gembitskaya E.A., Ashikhmina T.Ya. Spread of antibiotic-resistant actinobacteria in soils exposed to various types of anthropogenic impact. Povolzhskiy Journal of Ecology. 2024;(1):98-114. (In Russ.) https://doi.org/10.35885/1684-7318-2024-1-98-114

Views: 562


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-7318 (Print)
ISSN 2541-8963 (Online)