Indoor air quality assessment on polygons for solid municipal waste for microbial contamination and a method of its cleaning
https://doi.org/10.35885/1684-7318-2023-1-20-36
Abstract
Landfill biogas contains large amounts of toxic and harmful impurities and may be a source of microbiological contamination of both the complex municipal waste landfill itself and adjacent territories. This paper uses modern biotechnologies designed to protect the environment, to study the quantitative and qualitative composition of biogas for harmful factors, as well as for harmful substance removal from biogas. An assessment was made of air purification in the premises near landfills and adjacent territories using green plantations and a biological system based on an apparatus-biological complex for purification from microbiological contamination. The data obtained in our laboratory studies show that such apparatus-biological complexes can reduce the negative influence on the personnel and workers at operative points and the inhabitants of adjacent territories by air purification.
About the Authors
K. V. VorobyevRussian Federation
29 Polytechnicheskaya St., Saint Petersburg 195251
A. N. Chusov
Russian Federation
29 Polytechnicheskaya St., Saint Petersburg 195251
N. A. Politaeva
Russian Federation
29 Polytechnicheskaya St., Saint Petersburg 195251
A. V. Shchur
Belarus
43 Prospekt Mira, Mogilev 212000
References
1. Alikbayeva L. A., Figurovsky A. P., Vasilyev O. D., Yermolayev-Makovsky M. A., Merkuryeva M. A., Mokrousova O. N. Investigation of microbial contamination of the air and equipment of a biological waste water purification station. Hygiene and Sanitation, 2010, no. 5, pp. 24–25 (in Russian).
2. Maslikov V. I., Chusov A. N., Molodtsov D. V., Ryjakova M. G. The area-based determination of biogas emission from MSW landfill for the geoecological conditions assessment and substantiation of management of waste decomposition in the process of recultivation. Global Energy, 2012, no. 2 (147), pp. 260–265 (in Russian).
3. Maslikov V. I., Chusov A. N., Molodtsov D. V. Researches of biogas composition on landfill. Safety in Technosphere, 2013, vol. 2, no. 6, pp. 24–28 (in Russian). https://doi.org/10.12737/2158
4. Air Quality Improvement Device. Patent RU 82420 U1. Int. Cl. A61L 9/12, 3/12. Vorobyev K. V., Burtseva V. S., Spichkin G. L.; Proprietor: Georgy L. Spichkin. Application: 200813/22, Published: 25.08.2008, Date of publication 27.04.2009, 14 p. (in Russian).
5. Tsybulya N. V., Rychkova N. A., Dultseva G. G., Skubnevskaya G. I. Studying the possibilities of some ornamental plants as filters for cleaning the gas-air environment of premises from formaldehyde and other carbonyl compounds. Chemistry for Sustainable Development, 2000, vol. 8, no. 6, pp. 881–884 (in Russian).
6. Chusov A. N., Zubkova M. Yu., Korablev V. V., Maslikov V. I., Molodtsov D. V. The technology of using hydrogen-containing mixtures based on biogas in fuel cells for power supply of autonomous consumers. Global Energy, 2013, no. 4 (183), pp. 78–85 (in Russian).
7. Albrecht A., Fischer G., Brunnemann-Stubbe G., Jäckel U., Kämpfer P. Recommendations for study design and sampling strategies for airborne microorganisms, MVOC and odours in the surrounding of composting facilities. International Journal of Hygiene and Environmental Health, 2008, vol. 211, iss. 1–2, pp. 121–131. https://doi.org/10.1016/j.ijheh.2007.05.004
8. Andrianova M. Ju., Vorobjev K. V., Lednova Ju. A., Chusov A. N. A short-term model experiment of organic pollutants treatment with aquatic macrophytes in industrial and municipal waste waters. Applied Mechanics and Materials, 2014, vol. 587–589, pp. 653–656. https://doi.org/10.4028/www.scientific.net/AMM.587-589.653
9. Bünger J., Schappler-Scheele B., Hilgers R., Hallier E. A 5-year follow-up study on respiratory disorders and lung function in workers exposed to organic dust from composting plants. International Archives of Occupational and Environmental Health, 2007, vol. 80, iss. 4, pp. 306– 312. https://doi.org/10.1007/s00420-006-0135-2
10. Deportes I., Benoit-Guyod J. L., Zmirou D. Hazard to man and the environment posed by the use of urban waste compost. The Science of the Total Environment, 1995, vol. 172, iss. 2–3, pp. 197–222. https://doi.org/10.1016/0048-9697(95)04808-1
11. Douwes J., Thorne P., Pearce N., Heederik D. Bioaerosol health effects and exposure assessment: Progress and prospects. The Annals of Occupational Hygiene, 2003, vol. 47, iss. 3, pp. 187–2003. https://doi.org/10.1093/annhyg/meg032
12. Fischer G., Albrecht A., Jäckel U., Kämpfer P. Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations. International Journal of Hygiene and Environmental Health, 2008, vol. 211, iss. 1–2, pp. 132– 142. https://doi.org/10.1016/j.ijheh.2007.05.003
13. Gorny R. L., Reponen T., Willeke K., Schmechel D., Robine E., Boissier M., Grinshpun S. A. Fungal fragments as indoor air biocontaminants. Applied and Environmental Microbiology, 2002, vol. 68, no. 7, pp. 3522–3531. https://doi.org/10.1128/AEM.68.7.3522-3531.2002
14. Grisoli P., Rodolfi M., Villani S., Grignani E., Cottica D., Berri A., Maria Picco A., Dacarro C. Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environmental Research, 2009, vol. 109, iss. 2, pp. 135–142. https://doi.org/10.1016/j.envres.2008.11.001
15. Hargreaves J. C., Adi M. S., Warman P. R. A review of the use of composted municipal solid waste in agriculture. Agriculture Ecosystems & Environment, 2008, vol. 123, iss. 1–3, pp. 1–14. https://doi.org/10.1016/j.agee.2007.07.004
16. Herr C. E. W., zur Nieden A., Jankofsky M., Stilianakis N. I., Boedeker R. H., Eikmann T. F. Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study. Occupational and Environmental Medicine, 2003, vol. 60, iss. 5, pp. 336–342. https://doi.org/10.1136/ oem.60.5.336
17. Hung H. F., Kuo Y. M., Chien C. C., Chen C. C. Use of floating balls for reducing bacterial aerosol emissions from aeration in wastewater treatment processes. Journal of Hazardous Materials, 2010, vol. 175, iss. 1–3, pp. 866–871. https://doi.org/10.1016/j.jhazmat.2009.10.090
18. Huttunen K., Kaarakainen P., Meklin T., Nevalainen A., Hirvonen M.-R. Immunotoxicological properties of airborne particles at landfill, urban and rural sites and their relation to microbial concentrations. Journal of Environmental Monitoring, 2010, vol. 12, iss. 6, pp. 1368–1374. https://doi.org/10.1039/c002579h
19. Kalwasinska A., Burkowska A. Municipal landfill sites as sources of microorganisms potentially pathogenic to humans. Environmental Sciences: Processes and Impacts, 2013, vol. 15, iss. 5, pp. 1078–1086. https://doi.org/10.1039/c3em30728j
20. Kalwasinska A., Burkowska A., Brzezinska M. S. Exposure of workers of municipal landfill site to bacterial and fungal aerosol. Clean – Soil, Air, Water, 2014, vol. 42, iss. 10, pp. 1337–1343. https://doi.org/10.1002/clen.201300385
21. Le Goff O., Godon J.-J., Milferstedt K., Bacheley H., Steyer J.-P., Wery N. A new combination of microbial indicators for monitoring composting bioaerosols. Atmospheric Environment, 2012, vol. 61, pp. 428–433. https://doi.org/10.1016/j.atmosenv.2012.07.081
22. Liang R., Xiao P., She R., Han S., Chang L., Zheng L. Culturable airborne bacteria in outdoor poultry-slaughtering facility. Microbes and Environments, 2013, vol. 28, iss. 2, pp. 251–256. https://doi.org/10.1264/jsme2.ME12178
23. Lis D. O., Ulfig K., Wlazlo A., Pastuszka J. S. Microbial air quality in offices at municipal landfills. Journal of Occupational and Environmental Hygiene, 2004, vol. 1, iss. 2, pp. 62–68. https://doi.org/10.1080/15459620490275489
24. Nikaeen M., Hatamzadeh M., Hasanzadeh A., Sahami E., Joodan I. Bioaerosol emissions arising during application of municipal solid-waste compost. Aerobiologia, 2009, vol. 25, iss. 1, pp. 1–6. https://doi.org/10.1007/s10453-008-9102-6
25. Nolasco D., Lima R. N., Hernandez P. A., Perez N. M. Non-controlled biogenic emissions to the atmosphere from Lazareto Landfill, Tenerife, Canary Islands. Environmental Science and Pollution Research, 2008, vol. 15, iss. 1, pp. 51–60. https://doi.org/10.1065/espr2007.02.392
26. Palmiotto M., Fattore E., Paiano V., Celeste G., Colombo A., Davoli E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environment International, 2014, vol. 68, pp. 16–24. https://doi.org/10.1016/j.envint.2014.03.004
27. Ryzhakova M. G., Maslikov V. I., Chusov A. N., Korablev V. V. The environmental problem of household hazardous waste generation and treatment. Applied Mechanics and Materials, 2014, vol. 675–677, pp. 761–769. https://doi.org/10.4028/www.scientific.net/AMM.675-677.761
28. Soreanu G., Dixon M., Darlington A. Botanical biofiltration of indoor gaseous pollutants – A mini-review. Chemical Engineering Journal, 2013, vol. 229, pp. 585–594. https://doi.org/ 10.1016/j.cej.2013.06.074
29. Taha M. P. M., Drew G. H., Longhurst P. J., Smith R., Pollard S. J. T. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmospheric Environment, 2006, vol. 40, iss. 6, pp. 1159–1169. https://doi.org/10.1016/j.atmosenv.2005.11.010
30. Vitezova M., Vitez T. Microbiological characteristics of bioaerosols at the composting plant. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2013, vol. 61, no. 5, pp. 1479–1485. https://doi.org/10.11118/actaun201361051479
31. Wery N. Bioaerosols from composting facilities – a review. Frontiers in Cellular and Infection Microbiology, 2014, vol. 4, article number 42. https://doi.org/10.3389/fcimb.2014.00042
32. Zhang H. J., Liu X. H., Wang S. J., Fang L., Zhang L. H. Research on health risk assessment methodologies of municipal solid waste landfill. Advanced Materials Research, 2014, vol. 989– 994, pp. 5596–5600. https://doi.org/10.4028/www.scientific.net/AMR.989-994.5596
33. Zhazhkov V. V., Zubkova M. Yu., Maslikov V. I., Molodtsov D. V., Chusov A. N., Semenenko D. V. Model calculation of energy carriers expenses on the basis of biogas in system reformer – fuel cell for autonomous power supply systems. Applied Mechanics and Materials, 2015, vol. 725–726, pp. 1602–1607.
34. Zinchenko A. V., Paramonova N. N., Privalov V. I., Reshednikov A. I. Estimation of methane emissions in the St. Petersburg, Russia, region: An atmospheric nocturnal boundary layer budget approach. Journal of Geophysical Research. Atmospheres, 2002, vol. 107, iss. 20, pp. ACH 2-1 – ACH 2-11. https://doi.org/10.1029/2001JD001369
35. Zubkova M. Yu., Maslikov V. I., Molodtsov D. V., Chusov A. N. Experimental research of hydrogenous fuel production from biogas for usage in fuel cells of autonomous power supply systems. Advanced Materials Research, 2014 a, vol. 941–944, pp. 2107–2111. https://doi.org/10.4028/www.scientific.net/AMR.941-944.2107
36. Zubkova M. Yu., Maslikov V. I., Molodtsov D. V., Chusov A. N. The ways assessment of direct production electricity and heat from hydrogenous fuel based on biogas for autonomous consumers. Applied Mechanics and Materials, 2014 b, vol. 587–589, pp. 330–337. https://doi.org/ 10.4028/ www.scientific.net/AMM.587-589.330
Review
For citations:
Vorobyev K.V., Chusov A.N., Politaeva N.A., Shchur A.V. Indoor air quality assessment on polygons for solid municipal waste for microbial contamination and a method of its cleaning. Povolzhskiy Journal of Ecology. 2023;(1):20-36. (In Russ.) https://doi.org/10.35885/1684-7318-2023-1-20-36