Effect of plant root exudate constituents on the degradation of phenanthrene by rhizobacterium Mycolicibacterium gilvum (Mycobacteriaceae, Actinobacteria)
https://doi.org/10.35885/1684-7318-2022-2-193-205
Abstract
The influence of the major components of plant root exudates, namely, carboxylic acids (succinic acid as an example) and secondary plant phenolic metabolites – flavonoids (rutin as an example), on the microbial degradation of the three-ring polycyclic aromatic hydrocarbon (PAH) phenanthrene by rhizobacterium Mycolicibacterium gilvum was studied. The destructive activity of this microorganism relative to PAH was studied by cultivating it in a liquid mineral medium containing phenanthrene (0.2 g/L), succinic acid (5 g/L), and rutin (0, 0.05, 0.1 or 0.2 mmol/L) at 30°C under aeration on a shaker (130 rpm) for 14 days. The stimulating effect of succinic acid and rutin on the microbial degradation of phenanthrene was revealed. It was found that carboxylate was utilized as the main growth substrate for the microorganism, while flavonol and PAH had little effect on bacterial growth. Rutin had no antimicrobial effect on the microorganisms studied; on the contrary, in combination with succinic acid, it significantly increased the biomass growth. At high concentrations (0.1 and 0.2 mmol/L), rutin inhibited the degradation of phenanthrene by 22 and 56%, respectively. However, at a concentration of 0.05 mmol/L rutin increased phenanthrene degradation by 10%. Thus, the results obtained showed the dependence of the PAH microbial degradation efficiency on the presence, combination, and concentration of the plant root exudate constituents.
Keywords
About the Authors
L. V. PanchenkoRussian Federation
Leonid V. Panchenko
13 Prospect Entuziastov, Saratov 410049
D. A. Kuzyanov
Russian Federation
Dmitry A. Kuzyanov
83 Astrakhanskaya St., Saratov 410012
Ye. V. Pleshakova
Russian Federation
Yekaterina V. Pleshakova
83 Astrakhanskaya St., Saratov 410012
N. N. Pozdnyakova
Russian Federation
Natalia N. Pozdnyakova
13 Prospect Entuziastov, Saratov 410049
A. Yu. Muratova
Russian Federation
Anna Yu. Muratova
13 Prospect Entuziastov, Saratov 410049
O. V. Turkovskaya
Russian Federation
Olga V. Turkovskaya
13 Prospect Entuziastov, Saratov 410049
References
1. Al-Majmaie S., Nahar L., Sharples G. P., Wadi K., Sarker S. D. Isolation and antimicrobial activity of rutin and its derivatives from Ruta chalepensis (Rutaceae) growing in Iraq. Records of Natural Products, 2019, vol. 13, no. 1, pp. 64–70. https://doi.org/10.25135/rnp.74.18.03.250
2. Augulyte L., Kliaugaite D., Racys V., Jankunaite D., Zaliauskiene A., Andersson P. L., Bergqvist P. A. Chemical and ecotoxicological assessment of selected biologically activated sorbents for treating wastewater polluted with petroleum products with special emphasis on polycyclic aromatic hydrocarbons. Water, Air, & Soil Pollution, 2008, vol. 195, iss. 1–4, pp. 243–256. https://doi.org/10.1007/s11270-008-9743-7
3. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 1951, vol. 62, no. 3, pp. 293–300. https://doi.org/10.1128/jb.62.3.293- 300.1951
4. Bourceret A., Leyval C., Faur P., Lorgeoux C., Cebron A. High PAH degradation and activity of degrading bacteria during alfalfa growth where a contrasted active community developed in comparison to unplanted soil. Environmental Science and Pollution Research, 2018, vol. 25, iss. 29, pp. 29556–29571. https://doi.org/10.1007/s11356-018-2744-1
5. Brzeszcz J., Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation, 2018, vol. 29, iss. 4, pp. 359–407. https://doi.org/10.1007/s10532-018-9837-x
6. Ely C. S., Smets B. F. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation. International Journal of Phytoremediation, 2017, vol. 19, iss. 10, pp. 877–883. https://doi.org/10.1080/15226514.2017.1303805
7. Cushnie T. P., Lamb A. J. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005, vol. 26, iss. 5, pp. 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
8. Danciu C., Pinzaru I. A., Dehelean C. A., Hancianu M., Zupko I., Navolan D., Licker M., Ghiulai R. M., Şoica C. M. Antiproliferative and antimicrobial properties of pure and encapsulated rutin. Farmacia, 2018, vol. 66, no. 2, pp. 302–308.
9. Golubev S. N., Muratova A. Yu., Panchenko L. V., Shchyogolev S. Yu., Turkovskaya O. V. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes Partner-plant growth. Microbiological Research, 2021, vol. 253, iss. 8, article number 126885. https://doi.org/10.1016/j.micres.2021.126885
10. Hegde R. S., Fletcher J. S. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere, 1996, vol. 32, iss. 12, pp. 2471–2479. https://doi.org/10.1016/0045-6535(96)00144-0
11. Ite A. E., Semple K. T. The Effect of Flavonoids on the microbial mineralisation of polycyclic aromatic hydrocarbons in soil. International Journal of Environmental Bioremediation and Biodegradation, 2015, vol. 3, iss. 3, pp. 66–78. https://doi.org/10.12691/ijebb-3-3-1
12. Jones D. L., Darrah P. R. Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere. Plant and Soil, 1994, vol. 166, iss. 2, pp. 247–257. https://doi.org/10.1007/BF00008338
13. Jones D. L., Prabowo A. M., Kochian L. V. Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations – the effect of microorganisms on root exudation of malate under al stress. Plant and Soil, 1996, vol. 182, iss. 2, pp. 239–247.
14. Kim S. J., Kweon O., Cerniglia C. Degradation of polycyclic aromatic hydrocarbons by mycobacterium strains. In: K. N. Timmis, ed. Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Heidelberg, Springer, 2010, pp. 1865–1879.
15. Kuiper I., Kravchenko L. V., Bloemberg G. V., Lugtenberg B. J. J. Pseudomonas putida strain PCL 1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Molecular Plant-Microbe Interactions, 2002, vol. 15, no. 7, pp. 734–741. https://doi.org/10.1094/MPMI.2002.15.7.734
16. Lu L., Chai Q., He Sh., Yang Ch., Zhang D. Effects and mechanisms of phytoalexins on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium isolated from ryegrass. Environmental Pollution, 2019, vol. 253, pp. 872–881. https://doi.org/10.1016/j.envpol.2019.07.097
17. Macias-Benitez S., Garcia-Martinez A. M., Caballero Jimenez P., Gonzalez J. M., Tejada Moral T., Parrado Rubio J. Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties. Frontiers in Plant Science, 2020, vol. 11, article number 633. https://doi.org/10.3389/fpls.2020.00633
18. Mejia A. C. G., Pino N. J., Peñuela G. A. Effect of secondary metabolites present in Brassica nigra root exudates on anthracene and phenanthrene degradation by rhizosphere microorganism. Environmental Engineering Science, 2018, vol. 35, iss. 3, pp. 203–209. https://doi.org/10.1089/ees.2017.0156
19. Muratova A., Hübner Th., Tisher S., Turkovskaya O., Möder M., Kuschk P. Plant – rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. International Journal of Phytoremediation, 2003, vol. 5, iss. 2, pp. 137–151. https://doi.org/10.1080/713610176
20. Peng X., Xu P. F., Du H., Tang Y., Meng Y., Yuan L., Sheng L. P. Degradation of polycyclic aromatic hydrocarbons: A review. Applied Ecology and Environmental Research, 2018, vol. 16, no. 5, pp. 6419–6440. https://doi.org/10.15666/aeer/1605_64196440
21. Qiu X., Reed B. E., Viadero R. C. Effects of flavonoids on 14C(7,10)-benzo(a)pyrene degradation in root zone soil. Environmental Engineering Science, 2004, vol. 21, no. 5, pp. 637–646. https://doi.org/10.1089/ees.2004.21.637
22. Rym K. H., Eo S. K., Kim Y. S., Lee C. K., Han S. S. Antimicrobial activity and acute toxicity of natural rutin. Korean Journal Pharmacognosy, 1996, vol. 27, no. 4, pp. 309–315.
23. Schwab A. P., Banks M. K. Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: T. A. Anderson, J. R. Coats, eds. Bioremediation through Rhizosphere Technology. Washington, American Chemical Society, 1994, pp. 132–141. https://doi.org/10.1021/BK-1994- 0563.CH012
24. Shahsavar E., Schwarz A., Aburto-Medina A., Ball A. S. Biological degradation of polycyclic aromatic compounds (PAHs) in soil: A current perspective. Current Pollution Reports, 2019, vol. 5, iss. 3, pp. 84–92. https://doi.org/10.1007/s40726-019-00113-8
25. Siciliano S. D., Germida J. J. Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environmental Reviews, 1998, vol. 6, no. 1, pp. 65–79. https://doi.org/10.1139/a98-005
26. Tuyishime M. A., Harimana Y., Sun J. Biotransformation of rutin to quercetin by human gut bacteria and its effect on rutin bioavailability. Research Inventy, 2018, vol. 8, iss. 2, pp. 11–17.
27. Vidonish J. E., Zygourakis K., Masiello C. A., Sabadell G., Pedro J. J., Alvarez P. J. J. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2016, vol. 2, iss. 4, pp. 426–437. https://doi.org/10.1016/J.ENG.2016.04.005
28. Wang Z., Ding Z., Li Z., Ding Y., Jiang F., Liu J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential anti-biofilm Agent in Klebsiella Pneumoniae strains isolated from hospitalized patients. Microbial Pathogenesis, 2021, vol. 159, article number 105121. https://doi.org/10.1016/j.micpath.2021.105121
29. Weston L. A., Mathesius U. Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of Chemical Ecology, 2013, vol. 39, iss. 2, pp. 283–297. https://doi.org/10.1007/s10886-013-0248-5
30. Yoshitomi K. J., Shann J. R. Corn (Zea mays L.) root exudates and their impact on 14Cpyrene mineralization. Soil Biology and Biochemistry, 2001, vol. 33, iss. 12–13, pp. 1769–1776. https://doi.org/10.1016/S0038-0717(01)00102-X
Review
For citations:
Panchenko L.V., Kuzyanov D.A., Pleshakova Ye.V., Pozdnyakova N.N., Muratova A.Yu., Turkovskaya O.V. Effect of plant root exudate constituents on the degradation of phenanthrene by rhizobacterium Mycolicibacterium gilvum (Mycobacteriaceae, Actinobacteria). Povolzhskiy Journal of Ecology. 2022;(2):193-205. (In Russ.) https://doi.org/10.35885/1684-7318-2022-2-193-205